Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2016 Feb;40(2):305-11.
doi: 10.1038/ijo.2015.154. Epub 2015 Aug 17.

Effect of extended morning fasting upon ad libitum lunch intake and associated metabolic and hormonal responses in obese adults

Affiliations
Randomized Controlled Trial

Effect of extended morning fasting upon ad libitum lunch intake and associated metabolic and hormonal responses in obese adults

E A Chowdhury et al. Int J Obes (Lond). 2016 Feb.

Abstract

Background/objectives: Breakfast omission is positively associated with obesity and increased risk of disease. However, little is known about the acute effects of extended morning fasting upon subsequent energy intake and associated metabolic/regulatory factors in obese adults.

Subjects/methods: In a randomised cross-over design, 24 obese men (n=8) and women (n=16) extended their overnight fast by omitting breakfast consumption or ingesting a typical carbohydrate-rich breakfast of 2183±393 kJ (521±94 kcal), before an ad libitum pasta lunch 3 h later. Blood samples were obtained throughout the day until 3 h post lunch and analysed for hormones implicated in appetite regulation, along with metabolic outcomes and subjective appetite measures.

Results: Lunch intake was unaffected by extended morning fasting (difference=218 kJ, 95% confidence interval -54 kJ, 490 kJ; P=0.1) resulting in lower total intake in the fasting trial (difference=-1964 kJ, 95% confidence interval -1645 kJ, -2281 kJ; P<0.01). Systemic concentrations of peptide tyrosine-tyrosine and leptin were lower during the afternoon following morning fasting (P⩽0.06). Plasma-acylated ghrelin concentrations were also lower following the ad libitum lunch in the fasting trial (P<0.05) but this effect was not apparent for total ghrelin (P⩾0.1). Serum insulin concentrations were greater throughout the afternoon in the fasting trial (P=0.05), with plasma glucose also greater 1 h after lunch (P<0.01). Extended morning fasting did not result in greater appetite ratings after lunch, with some tendency for lower appetite 3 h post lunch (P=0.09).

Conclusions: We demonstrate for the first time that, in obese adults, extended morning fasting does not cause compensatory intake during an ad libitum lunch nor does it increase appetite during the afternoon. Morning fasting reduced satiety hormone responses to a subsequent lunch meal but counterintuitively also reduced concentrations of the appetite-stimulating hormone-acylated ghrelin during the afternoon relative to lunch consumed after breakfast.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Energy intake during trials. In the morning fasting trial an asymmetric confidence interval is plotted, the negative portion of which reflects the comparison between lunches and the positive portion reflects the comparison against total intake (that is, lunch plus breakfast). An asterisk above a bar represents the comparison between the total intake in the two trials (n=24), *P<0.01.
Figure 2
Figure 2
Metabolic responses during trials (a) plasma glucose, (b) serum insulin, (c) plasma NEFA, (all measures n=18) where missing data is owing to insufficient blood for analysis. Values represent mean±nCI. *P ⩽0.05 versus corresponding time point in other trial. Annotations on figure represent the following, B=Breakfast period, in which participants ate a prescribed breakfast during the breakfast trial and rested during the morning fasting trial. L=Ad libitum pasta lunch.
Figure 3
Figure 3
Hormonal responses during trials (a) plasma-acylated ghrelin, (b) plasma total ghrelin, (c) plasma PYY, (d) serum leptin, (all measures n=18) where missing data is because of insufficient blood for analysis. Values represent mean±nCI. *P<0.05 versus corresponding time point in other trial. Annotations on figure represent the following, B=Breakfast period, in which participants ate a prescribed breakfast during the breakfast trial and rested during the morning fasting trial. L=Ad libitum pasta lunch.
Figure 4
Figure 4
Appetite score during trials. (n=24), values represent mean±nCI. *P<0.01 versus corresponding time point in other trial. Annotations on figure represent the following, B=Breakfast period, in which participants ate a prescribed breakfast during the breakfast trial and rested during the morning fasting trial. L=Ad libitum pasta lunch.

References

    1. 1Ma Y, Bertone ER, Stanek 3rd EJ, Reed GW, Hebert JR, Cohen NL et al. Association between eating patterns and obesity in a free-living US adult population. Am J Epidemiol 2003; 158: 85–92. - PubMed
    1. 2Horikawa C, Kodama S, Yachi Y, Heianza Y, Hirasawa R, Ibe Y et al. Skipping breakfast and prevalence of overweight and obesity in Asian and Pacific regions: a meta-analysis. Prev Med 2011; 53: 260–267. - PubMed
    1. 3Purslow LR, Sandhu MS, Forouhi N, Young EH, Luben RN, Welch AA et al. Energy intake at breakfast and weight change: prospective study of 6,764 middle-aged men and women. Am J Epidemiol 2008; 167: 188–192. - PubMed
    1. 4Mekary RA, Giovannucci E, Cahill L, Willett WC, van Dam RM, Hu FB. Eating patterns and type 2 diabetes risk in older women: breakfast consumption and eating frequency. Am J Clin Nutr 2013; 98: 436–443. - PMC - PubMed
    1. 5Mekary RA, Giovannucci E, Willett WC, van Dam RM, Hu FB. Eating patterns and type 2 diabetes risk in men: breakfast omission, eating frequency, and snacking. Am J Clin Nutr 2012; 95: 1182–1189. - PMC - PubMed

Publication types

MeSH terms