Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Sep 4;5(17):2927-34.
doi: 10.1021/jz501392m. Epub 2014 Aug 17.

Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer

Affiliations

Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer

Hui-Seon Kim et al. J Phys Chem Lett. .

Abstract

Current-voltage (I-V) characteristics of CH3NH3PbI3 perovskite solar cells are studied using a time-dependent current response with stepwise sweeping of the bias voltage. Compared with the crystalline Si solar cell showing time-independent current at a given bias voltage, the perovskite solar cells exhibit time-dependent current response. The current increases with time and becomes steady at forward scan from short-circuit to open-circuit, whereas it is decayed and saturated with time at reverse scan from open-circuit to short-circuit. Time-dependent current response eventually leads to I-V hysteresis depending on the scan direction and the scan rate. Crystal size of CH3NH3PbI3 and the mesoporous TiO2 (mp-TiO2) film are found to influence I-V hysteresis, where the I-V hysteresis is alleviated as crystal size increases and in the presence of mp-TiO2. The capacitance observed at low frequency (0.1 to 1 Hz), associated with dipole polarization, tends to diminish as size of perovskite and mp-TiO2 layer thickness increases, which suggests that the origin of hysteresis correlates to the capacitive characteristic of CH3NH3PbI3 and the degree of hysteresis depends strongly on perovskite crystal size and mesoporous TiO2 layer.

Keywords: CH3NH3PbI3; capacitive current; crystal size; hysteresis; mesoporous TiO2; perovskite; polarization; relaxation; solar cell.

PubMed Disclaimer

LinkOut - more resources