Omics on bioleaching: current and future impacts
- PMID: 26278538
- PMCID: PMC4768214
- DOI: 10.1007/s00253-015-6903-8
Omics on bioleaching: current and future impacts
Abstract
Bioleaching corresponds to the microbial-catalyzed process of conversion of insoluble metals into soluble forms. As an applied biotechnology globally used, it represents an extremely interesting field of research where omics techniques can be applied in terms of knowledge development, but moreover in terms of process design, control, and optimization. In this mini-review, the current state of genomics, proteomics, and metabolomics of bioleaching and the major impacts of these analytical methods at industrial scale are highlighted. In summary, genomics has been essential in the determination of the biodiversity of leaching processes and for development of conceptual and functional metabolic models. Proteomic impacts are mostly related to microbe-mineral interaction analysis, including copper resistance and biofilm formation. Early steps of metabolomics in the field of bioleaching have shown a significant potential for the use of metabolites as industrial biomarkers. Development directions are given in order to enhance the future impacts of the omics in biohydrometallurgy.
Keywords: Bioleaching; Genomics; Metabolomics; Proteomics.
Figures
Similar articles
-
Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries.Appl Microbiol Biotechnol. 2003 Dec;63(3):249-57. doi: 10.1007/s00253-003-1404-6. Epub 2003 Oct 18. Appl Microbiol Biotechnol. 2003. PMID: 14566430 Review.
-
Biomining: metal recovery from ores with microorganisms.Adv Biochem Eng Biotechnol. 2014;141:1-47. doi: 10.1007/10_2013_216. Adv Biochem Eng Biotechnol. 2014. PMID: 23793914 Review.
-
Systems metabolic engineering in an industrial setting.Appl Microbiol Biotechnol. 2013 Mar;97(6):2319-26. doi: 10.1007/s00253-013-4738-8. Epub 2013 Feb 10. Appl Microbiol Biotechnol. 2013. PMID: 23397485 Review.
-
From Laboratory towards Industrial Operation: Biomarkers for Acidophilic Metabolic Activity in Bioleaching Systems.Genes (Basel). 2021 Mar 25;12(4):474. doi: 10.3390/genes12040474. Genes (Basel). 2021. PMID: 33806162 Free PMC article.
-
Progress in bioleaching: part B: applications of microbial processes by the minerals industries.Appl Microbiol Biotechnol. 2013 Sep;97(17):7543-52. doi: 10.1007/s00253-013-5095-3. Epub 2013 Jul 23. Appl Microbiol Biotechnol. 2013. PMID: 23877580 Review.
Cited by
-
Advances in bioleaching of waste lithium batteries under metal ion stress.Bioresour Bioprocess. 2023 Mar 10;10(1):19. doi: 10.1186/s40643-023-00636-5. Bioresour Bioprocess. 2023. PMID: 38647921 Free PMC article. Review.
-
From Genes to Bioleaching: Unraveling Sulfur Metabolism in Acidithiobacillus Genus.Genes (Basel). 2023 Sep 8;14(9):1772. doi: 10.3390/genes14091772. Genes (Basel). 2023. PMID: 37761912 Free PMC article. Review.
-
Beyond Risk: Bacterial Biofilms and Their Regulating Approaches.Front Microbiol. 2020 May 21;11:928. doi: 10.3389/fmicb.2020.00928. eCollection 2020. Front Microbiol. 2020. PMID: 32508772 Free PMC article. Review.
-
Microbial copper resistance: importance in biohydrometallurgy.Microb Biotechnol. 2017 Mar;10(2):279-295. doi: 10.1111/1751-7915.12450. Epub 2016 Oct 28. Microb Biotechnol. 2017. PMID: 27790868 Free PMC article. Review.
-
Weak Iron Oxidation by Sulfobacillus thermosulfidooxidans Maintains a Favorable Redox Potential for Chalcopyrite Bioleaching.Front Microbiol. 2018 Dec 12;9:3059. doi: 10.3389/fmicb.2018.03059. eCollection 2018. Front Microbiol. 2018. PMID: 30631311 Free PMC article.
References
-
- Acosta C., Galleguillos P., Ghorbani Y., Tapia P., Contador Y., Velásquez A., Espoz C., Pinilla C., Demergasso C. Variation in microbial community from predominantly mesophilic to thermotolerant and moderately thermophilic species in an industrial copper heap bioleaching operation. Hydrometallurgy. 2014;150:281–289. doi: 10.1016/j.hydromet.2014.09.010. - DOI
-
- Almárcegui RJ, Navarro CA, Paradela A, Albar JP, von Bernath D, Jerez CA. Response to copper of Acidithiobacillus ferrooxidans ATCC 23270 grown in elemental sulfur. Res Microbiol. 2014 - PubMed
-
- Amouric A, Brochier-Armanet C, Johnson DB, Bonnefoy V, Hallberg KB. Phylogenetic and genetic variation among Fe(II)-oxidizing acidithiobacilli supports the view that these comprise multiple species with different ferrous iron oxidation pathways. Microbiology. 2011;157:111–122. doi: 10.1099/mic.0.044537-0. - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials