Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016;50(2):126-42.
doi: 10.3109/10715762.2015.1046858. Epub 2015 Jul 30.

The impact of thiol peroxidases on redox regulation

Affiliations
Review

The impact of thiol peroxidases on redox regulation

Leopold Flohé. Free Radic Res. 2016.

Abstract

The biology of glutathione peroxidases and peroxiredoxins is reviewed with emphasis on their role in metabolic regulation. Apart from their obvious function in balancing oxidative challenge, these thiol peroxidases are not only implicated in orchestrating the adaptive response to oxidative stress, but also in regulating signaling triggered by hormones, growth factors and cytokines. The mechanisms presently discussed comprise dampening of redox-sensitive regulatory processes by elimination of hydroperoxides, suppression of lipoxygenase activity, committing suicide to save H2O2 for signaling, direct binding to receptors or regulatory proteins in a peroxidase activity-independent manner, or acting as sensors for hydroperoxides and as transducers of oxidant signals. The various mechanistic proposals are discussed in the light of kinetic data, which unfortunately are scarce. Taking into account pivotal criteria of a meaningful regulatory circuit, kinetic plausibility and specificity, the mechanistic concepts implying a direct sensor/transducer function of the thiol peroxidases appear most appealing. With rate constants for the reaction with hydroperoxide of 10(5)-10(8) M(-1) s(-1), thiol peroxidases are qualified as kinetically preferred hydroperoxide sensors, and the ability of the oxidized enzymes to react with defined protein thiols lends specificity to the transduction process. The versatility of thiol peroxidases, however, allows multiple ways of interaction with regulatory pathways.

Keywords: glutathione peroxidases; hydroperoxide sensing; kinetics; peroxiredoxins; redox regulation; specificity.

PubMed Disclaimer

LinkOut - more resources