Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Aug 25;66(8):877-88.
doi: 10.1016/j.jacc.2015.06.1091.

Physiological Growth, Remodeling Potential, and Preserved Function of a Novel Bioprosthetic Tricuspid Valve: Tubular Bioprosthesis Made of Small Intestinal Submucosa-Derived Extracellular Matrix

Affiliations
Free article

Physiological Growth, Remodeling Potential, and Preserved Function of a Novel Bioprosthetic Tricuspid Valve: Tubular Bioprosthesis Made of Small Intestinal Submucosa-Derived Extracellular Matrix

Farhan Zafar et al. J Am Coll Cardiol. .
Free article

Abstract

Background: Prosthetic valves currently used in children lack the ability to grow with the patient and often require multiple reoperations. Small intestinal submucosa-derived extracellular matrix (SIS-ECM) has been used successfully as a patch for repair in various tissues, including vessels, valves, and myocardium.

Objectives: This study sought to assess the remodeling potential of a tubular tricuspid valve (TV) bioprosthesis made of SIS-ECM by evaluating its growth, structure, and function in a growing ovine model.

Methods: A total of 12 3-month-old lambs were studied for a period of 3 or 8 months. SIS-ECM TVs were placed in 8 lambs; conventional bioprosthetic valves and native valves (NV) were studied as controls. All lambs underwent serial echocardiography, measuring annulus diameter and valve and right ventricular function.

Results: The SIS-ECM valves demonstrated an incremental increase in annular diameter similar to NV. SIS-ECM valve function was normal in 7 of 8; 1 valve had severe regurgitation due to a flail leaflet. Explanted SIS-ECM valves approximated native tissue in gross appearance. Histopathology demonstrated migration of resident mesenchymal cells into the scaffold and trilaminar ECM organization similar to an NV, without inflammation or calcification at 8 months. Ex vivo mechanical testing of SIS-ECM valve tissue showed normalization of the elastic modulus by 8 months.

Conclusions: In an ovine model, tubular SIS-ECM TV bioprostheses demonstrate "growth" and a cell-matrix structure similar to mature NVs while maintaining normal valve function. The SIS-ECM valve may provide a novel solution for TV replacement in children and adults.

Keywords: extracellular matrix; pediatrics; surgery.

PubMed Disclaimer

Comment in

  • In Search of Living Valve Substitutes.
    Yacoub MH. Yacoub MH. J Am Coll Cardiol. 2015 Aug 25;66(8):889-91. doi: 10.1016/j.jacc.2015.07.007. J Am Coll Cardiol. 2015. PMID: 26293757 No abstract available.

Similar articles

Cited by

Publication types

LinkOut - more resources