Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Aug 7:11:437-50.
doi: 10.2147/VHRM.S63791. eCollection 2015.

Secondary stroke prevention: challenges and solutions

Affiliations
Review

Secondary stroke prevention: challenges and solutions

Charles Esenwa et al. Vasc Health Risk Manag. .

Abstract

Stroke is the leading cause of disability in the USA and a major cause of mortality worldwide. One out of four strokes is recurrent. Secondary stroke prevention starts with deciphering the most likely stroke mechanism. In general, one of the main goals in stroke reduction is to control vascular risk factors such as hypertension, diabetes, dyslipidemia, and smoking cessation. Changes in lifestyle like a healthy diet and aerobic exercise are also recommended strategies. In the case of cardioembolism due to atrial fibrillation, mechanical valves, or cardiac thrombus, anticoagulation is the mainstay of therapy. The role of anticoagulation is less evident in the case of bioprosthetic valves, patent foramen ovale, and dilated cardiomyopathy with low ejection fraction. Strokes due to larger artery atherosclerosis account for approximately a third of all strokes. In the case of symptomatic extracranial carotid stenosis, surgical intervention as close as possible in time to the index event seems highly beneficial. In the case of intracranial large artery atherosclerosis, the best medical therapy consists of antiplatelets, high-dose statins, aggressive controls of vascular risk factors, and lifestyle modifications, with no role for intracranial arterial stenting or angioplasty. For patients with small artery occlusion (ie, lacunar stroke), the therapy is similar to that used in patients with intracranial large artery atherosclerosis. Despite the constant new evidence on how to best treat patients who have suffered a stroke, the risk of stroke recurrence remains unacceptably high, thus evidencing the need for novel therapies.

Keywords: diabetes; dyslipidemia; hypertension; stroke mechanisms; stroke risk.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Stroke and extracranial carotid atherosclerosis. Notes: A man in his 90s came to the hospital with sudden onset of right-sided weakness and difficulty finding words. On exam, he was found aphasic with mild right-sided hemiparesis. (A) A brain magnetic resonance image showed evidence of scattered infarcts over the left hemisphere and a small infarct in the territory of the right anterior cerebral artery. (B) The neck magnetic resonance angiograph showed a flow gap in the left extracranial proximal internal carotid artery (arrow). (C) The brain magnetic resonance angiograph showed the lack of the right proximal segment of the anterior cerebral artery, thus explaining the presence of bi-hemispheric infarcts attributable to left extracranial carotid stenosis through embolization of the anterior communicating artery. (D) A neck artery Doppler confirmed the degree of stenosis (>80%) and the patient underwent carotid endarterectomy and was discharged home after the initial neurological deficits resolved.
Figure 2
Figure 2
Stroke and intracranial atherosclerosis. Notes: A woman in her 60s came to the hospital for left-sided weakness and headache. On exam, she was found to have mild left pronator drift and visuospatial neglect. (A) The brain magnetic resonance image showed evidence of a right parietal lobe cortical infarct and (B) the brain magnetic resonance angiograph showed evidence of diffuse luminal narrowing of her brain arteries (arrows), with some of these stenoses located proximal to the area of her infarction (small arrow), suggesting artery-to-artery embolism from intracranial large artery stenosis as the most likely stroke mechanism.
Figure 3
Figure 3
Small artery disease versus branch occlusive disease. Notes: (A) An example of a small infarct in the left putamen and subcortical white matter (arrow), most likely due to the occlusion of a lenticulostriate artery branching of from the middle cerebral artery. (B) The brain magnetic resonance angiograph in this same patient showed no evidence of large artery stenosis in the proximal middle cerebral artery. (C) A patient with evidence of an infarct (arrow) involving the lenticular nucleus and the head of the caudate nucleus. (D) Contrary to the case presented in A, this patient shows evidence of a high-degree of stenosis in the middle cerebral artery in the brain computed tomography angiograph (large arrow), suggesting branch occlusive disease and “pure” small artery disease as the underling etiology of the infarct.

References

    1. Sacco RL, Kasner SE, Broderick JP, et al. American Heart Association Stroke Council, Council on Cardiovascular Surgery and Anesthesia. Council on Cardiovascular Radiology and Intervention. Council on Cardiovascular and Stroke Nursing et al. An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44(7):2064–2089. - PMC - PubMed
    1. Mozaffarian D, Benjamin EJ, Go AS, et al. American Heart Association Statistics Committee and Stroke Statistics Subcommittee Heart disease and stroke statistics – 2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–e322. - PubMed
    1. O’Donnell MJ, Xavier D, Liu L, et al. INTERSTROKE investigators Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet. 2010;376(9735):112–123. - PubMed
    1. Lackland DT, Roccella EJ, Deutsch AF, et al. American Heart Association Stroke Council. Council on Cardiovascular and Stroke Nursing. Council on Quality of Care and Outcomes Research. Council on Functional Genomics and Translational Biology Factors influencing the decline in stroke mortality: a statement from the American Heart Association/American Stroke Association. Stroke. 2014;45(1):315–353. - PMC - PubMed
    1. Bamford J, Sandercock P, Dennis M, Burn J, Warlow C. Classification and natural history of clinically identifiable subtypes of cerebral infarction. Lancet. 1991;337(8756):1521–1526. - PubMed

MeSH terms