Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Aug 7:6:387.
doi: 10.3389/fimmu.2015.00387. eCollection 2015.

The Dipeptidyl Peptidase Family, Prolyl Oligopeptidase, and Prolyl Carboxypeptidase in the Immune System and Inflammatory Disease, Including Atherosclerosis

Affiliations
Review

The Dipeptidyl Peptidase Family, Prolyl Oligopeptidase, and Prolyl Carboxypeptidase in the Immune System and Inflammatory Disease, Including Atherosclerosis

Yannick Waumans et al. Front Immunol. .

Abstract

Research from over the past 20 years has implicated dipeptidyl peptidase (DPP) IV and its family members in many processes and different pathologies of the immune system. Most research has been focused on either DPPIV or just a few of its family members. It is, however, essential to consider the entire DPP family when discussing any one of its members. There is a substantial overlap between family members in their substrate specificity, inhibitors, and functions. In this review, we provide a comprehensive discussion on the role of prolyl-specific peptidases DPPIV, FAP, DPP8, DPP9, dipeptidyl peptidase II, prolyl carboxypeptidase, and prolyl oligopeptidase in the immune system and its diseases. We highlight possible therapeutic targets for the prevention and treatment of atherosclerosis, a condition that lies at the frontier between inflammation and cardiovascular disease.

Keywords: atherosclerosis; dipeptidyl peptidase; fibroblast activation protein α; immunophysiology; inflammation; prolyl carboxypeptidase; prolyl oligopeptidase.

PubMed Disclaimer

Figures

Figure 1
Figure 1
The DPP family. Summary of the names, the localization, and most important field of action of all members of the DPP family. sDPPIV, soluble DPPIV; sFAP, soluble FAP; DPP9-L, long form of DPP9; N, nucleus; LYSO, lysosome; MT, microtubules; in, intracellular; out, extracellular.
Figure 2
Figure 2
Summary of CD26/DPPIV expression in cells of the immune system.
Figure 3
Figure 3
Overview of the expression and function of individual DPP family members in the innate immune system. Expression-based evidence is in italic.
Figure 4
Figure 4
Overview of in vitro data on DPP involvement in primary human T cell activation. (A) M6P/IGFIIR associates with mannose-6-phosphorylated DPPIV causing it to associate with CD45 in lipid rafts. This facilitates co-localization with the TCR signaling molecules for T cell costimulation. (B) Interaction of ADA presented by ADA-anchoring proteins on dendritic cells with DPPIV on T cells causes costimulation. (C) Interaction of DPPIV on T cells with caveolin-1 on monocytes induces the expression of CD86 on the latter. Interaction of CD86 with CD28 costimulates T cells. (D) Inhibition of DPP8/9 induces TGFβ in PWM-stimulated T cells. TGFβ attenuates T cell activation. (E) Inhibition or absence of DPPII steers T cells toward TH17 differentiation.
Figure 5
Figure 5
Dipeptidyl peptidase inhibition as a putative strategy for the treatment of atherosclerosis. (1) DPP9 inhibition would attenuate M1 macrophage activation, reducing local inflammation. Reduction in TNFα would reduce FAP on smooth muscle cells (SMCs). This and FAP inhibition (2) would reduce collagen degradation and therefore plaque instability. PREP inhibition (3) would reduce neutrophil infiltration and consequently endothelial dysfunction and further monocyte infiltration. DPPIV inhibition (4) would prevent SMC proliferation, foam cell formation, endothelial dysfunction, and monocyte infiltration.

References

    1. Broxmeyer HE, Hoggatt J, O’Leary H, Mantel C, Brahmananda C, Cooper S, et al. Dipeptidylpeptidase 4 negatively regulates colony-stimulating factor activity and stress hematopoiesis. Nat Med (2012) 18:1786–96.10.1038/nm.2991.Dipeptidylpeptidase - DOI - PMC - PubMed
    1. Bezerra GA, Dobrovetsky E, Dong A, Seitova A, Crombett L, Shewchuk LM, et al. Structures of human DPP7 reveal the molecular basis of specific inhibition and the architectural diversity of proline-specific peptidases. PLoS One (2012) 7:e43019.10.1371/journal.pone.0043019 - DOI - PMC - PubMed
    1. Mentlein R, Struckhoff G. Purification of two dipeptidyl aminopeptidases II from rat brain and their action on proline-containing neuropeptides. J Neurochem (1989) 52:1284–93.10.1111/j.1471-4159.1989.tb01877.x - DOI - PubMed
    1. Maes M-B, Scharpé S, De Meester I. Dipeptidyl peptidase II (DPPII), a review. Clin Chim Acta (2007) 380:31–49.10.1016/j.cca.2007.01.024 - DOI - PubMed
    1. Stöckel-Maschek A, Mrestani-Klaus C, Stiebitz B, Demuth H, Neubert K. Thioxo amino acid pyrrolidides and thiazolidides: new inhibitors of proline specific peptidases. Biochim Biophys Acta (2000) 1479:15–31.10.1016/S0167-4838(00)00054-6 - DOI - PubMed