Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jan;35(1):244-56.
doi: 10.1109/TMI.2015.2466082. Epub 2015 Aug 20.

An Inverse Problems Approach to MR-EPT Image Reconstruction

An Inverse Problems Approach to MR-EPT Image Reconstruction

A Borsic et al. IEEE Trans Med Imaging. 2016 Jan.

Abstract

Magnetic Resonance-Electrical Properties Tomography (MR-EPT) is an imaging modality that maps the spatial distribution of the electrical conductivity and permittivity using standard MRI systems. The presence of a body within the scanner alters the RF field, and by mapping these alterations it is possible to recover the electrical properties. The field is time-harmonic, and can be described by the Helmholtz equation. Approximations to this equation have been previously used to estimate conductivity and permittivity in terms of first or second derivatives of RF field data. Using these same approximations, an inverse approach to solving the MR-EPT problem is presented here that leverages a forward model for describing the magnitude and phase of the field within the imaging domain, and a fitting approach for estimating the electrical properties distribution. The advantages of this approach are that 1) differentiation of the measured data is not required, thus reducing noise sensitivity, and 2) different regularization schemes can be adopted, depending on prior knowledge of the distribution of conductivity or permittivity, leading to improved image quality. To demonstrate the developed approach, both Quadratic (QR) and Total Variation (TV) regularization methods were implemented and evaluated through numerical simulation and experimentally acquired data. The proposed inverse approach to MR-EPT reconstruction correctly identifies contrasts and accurately reconstructs the geometry in both simulations and experiments. The TV regularized scheme reconstructs sharp spatial transitions, which are difficult to reconstruct with other, more traditional approaches.

PubMed Disclaimer

MeSH terms

LinkOut - more resources