Antimicrobial photodynamic inactivation in nanomedicine: small light strides against bad bugs
- PMID: 26305189
- PMCID: PMC4557875
- DOI: 10.2217/nnm.15.67
Antimicrobial photodynamic inactivation in nanomedicine: small light strides against bad bugs
Retraction in
-
Retraction.Nanomedicine (Lond). 2023 Mar;18(6):577. doi: 10.2217/nnm.15.67r1. Epub 2022 Apr 27. Nanomedicine (Lond). 2023. PMID: 35473367 Free PMC article. No abstract available.
Abstract
The relentless advance of drug-resistance among pathogenic microbes, mandates a search for alternative approaches that will not cause resistance. Photodynamic inactivation (PDI) involves the combination of nontoxic dyes with harmless visible light to produce reactive oxygen species that can selectively kill microbial cells. PDI can be broad-spectrum in nature and can also destroy microbial cells in biofilms. Many different kinds of nanoparticles have been studied to potentiate antimicrobial PDI by improving photosensitizer solubility, photochemistry, photophysics and targeting. This review will cover photocatalytic disinfection with titania nanoparticles, carbon nanomaterials (fullerenes, carbon nanotubes and graphene), liposomes and polymeric nanoparticles. Natural polymers (chitosan and cellulose), gold and silver plasmonic nanoparticles, mesoporous silica, magnetic and upconverting nanoparticles have all been used for PDI.
Keywords: bacteria; carbon nanomaterials; fungi; liposomes; photodynamic therapy; photoinactivation; photosensitizer; titania photocatalysis; upconversion.
Conflict of interest statement
The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript.
No writing assistance was utilized in the production of this manuscript.
Figures














Similar articles
-
Innovative cationic fullerenes as broad-spectrum light-activated antimicrobials.Nanomedicine. 2010 Jun;6(3):442-52. doi: 10.1016/j.nano.2009.10.005. Epub 2009 Nov 12. Nanomedicine. 2010. PMID: 19914400 Free PMC article.
-
Chitosan nanoparticles for antimicrobial photodynamic inactivation: characterization and in vitro investigation.Photochem Photobiol. 2012 May-Jun;88(3):570-6. doi: 10.1111/j.1751-1097.2012.01101.x. Epub 2012 Feb 21. Photochem Photobiol. 2012. PMID: 22283820
-
Antimicrobial photodynamic therapy to kill Gram-negative bacteria.Recent Pat Antiinfect Drug Discov. 2013 Aug;8(2):108-20. doi: 10.2174/1574891x113089990012. Recent Pat Antiinfect Drug Discov. 2013. PMID: 23550545 Free PMC article. Review.
-
Advances in antimicrobial photodynamic inactivation at the nanoscale.Nanophotonics. 2017 Aug;6(5):853-879. doi: 10.1515/nanoph-2016-0189. Epub 2017 Aug 1. Nanophotonics. 2017. PMID: 29226063 Free PMC article.
-
Porphyrin Photosensitizers Grafted in Cellulose Supports: A Review.Int J Mol Sci. 2023 Feb 9;24(4):3475. doi: 10.3390/ijms24043475. Int J Mol Sci. 2023. PMID: 36834886 Free PMC article. Review.
Cited by
-
Turning Photons into Drugs: Phthalocyanine-Based Photosensitizers as Efficient Photoantimicrobials.Chemistry. 2021 Jan 26;27(6):1903-1920. doi: 10.1002/chem.202002703. Epub 2020 Nov 23. Chemistry. 2021. PMID: 32677718 Free PMC article. Review.
-
Silver Nanoparticles for the Therapy of Tuberculosis.Int J Nanomedicine. 2020 Mar 31;15:2231-2258. doi: 10.2147/IJN.S241183. eCollection 2020. Int J Nanomedicine. 2020. PMID: 32280217 Free PMC article. Review.
-
Clinical applications of antimicrobial photodynamic therapy in dentistry.Front Microbiol. 2023 Jan 5;13:1020995. doi: 10.3389/fmicb.2022.1020995. eCollection 2022. Front Microbiol. 2023. PMID: 36687594 Free PMC article. Review.
-
Sequential Photodynamic Therapy with Phthalocyanine Encapsulated Chitosan-Tripolyphosphate Nanoparticles and Flucytosine Treatment against Candida tropicalis.Pharmaceutics. 2019 Jan 4;11(1):16. doi: 10.3390/pharmaceutics11010016. Pharmaceutics. 2019. PMID: 30621174 Free PMC article.
-
Recent Trends in Covalent and Metal Organic Frameworks for Biomedical Applications.Nanomaterials (Basel). 2018 Nov 7;8(11):916. doi: 10.3390/nano8110916. Nanomaterials (Basel). 2018. PMID: 30405018 Free PMC article. Review.
References
-
- Guyer B, Freedman MA, Strobino DM, Sondik EJ. Annual summary of vital statistics: trends in the health of Americans during the 20th century. Pediatrics. 2000;106(6):1307–1317. - PubMed
-
- Fauci AS, Morens DM. The perpetual challenge of infectious diseases. N. Engl. J. Med. 2012;366(5):454–461. - PubMed
-
- Youngblood WJ, Gryko DT, Lammi RK, Bocian DF, Holten D, Lindsey JS. Glaser-mediated synthesis and photophysical characterization of diphenylbutadiyne-linked porphyrin dyads. J. Org. Chem. 2002;67(7):2111–2117. - PubMed
-
- Smith R, Coast J. The true cost of antimicrobial resistance. Br. Med. J. 2013;346:f1493. - PubMed
-
- Kraus CN. Low hanging fruit in infectious disease drug development. Curr. Opin. Microbiol. 2008;11(5):434–438. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials