A positive feedback at the cellular level promotes robustness and modulation at the circuit level
- PMID: 26311181
- PMCID: PMC4620135
- DOI: 10.1152/jn.00471.2015
A positive feedback at the cellular level promotes robustness and modulation at the circuit level
Abstract
This article highlights the role of a positive feedback gating mechanism at the cellular level in the robustness and modulation properties of rhythmic activities at the circuit level. The results are presented in the context of half-center oscillators, which are simple rhythmic circuits composed of two reciprocally connected inhibitory neuronal populations. Specifically, we focus on rhythms that rely on a particular excitability property, the postinhibitory rebound, an intrinsic cellular property that elicits transient membrane depolarization when released from hyperpolarization. Two distinct ionic currents can evoke this transient depolarization: a hyperpolarization-activated cation current and a low-threshold T-type calcium current. The presence of a slow activation is specific to the T-type calcium current and provides a slow positive feedback at the cellular level that is absent in the cation current. We show that this slow positive feedback is required to endow the network rhythm with physiological modulation and robustness properties. This study thereby identifies an essential cellular property to be retained at the network level in modeling network robustness and modulation.
Keywords: central pattern generators; modulation; networks; postinhibitory rebound; robustness.
Copyright © 2015 the American Physiological Society.
Figures







Similar articles
-
Circuit feedback increases activity level of a circuit input through interactions with intrinsic properties.J Neurophysiol. 2017 Aug 1;118(2):949-963. doi: 10.1152/jn.00772.2016. Epub 2017 May 3. J Neurophysiol. 2017. PMID: 28469000 Free PMC article.
-
Cellular switches orchestrate rhythmic circuits.Biol Cybern. 2019 Apr;113(1-2):71-82. doi: 10.1007/s00422-018-0778-6. Epub 2018 Sep 3. Biol Cybern. 2019. PMID: 30178150
-
Mechanisms of oscillation in dynamic clamp constructed two-cell half-center circuits.J Neurophysiol. 1996 Aug;76(2):867-83. doi: 10.1152/jn.1996.76.2.867. J Neurophysiol. 1996. PMID: 8871205
-
Neurophysiology of HCN channels: from cellular functions to multiple regulations.Prog Neurobiol. 2014 Jan;112:1-23. doi: 10.1016/j.pneurobio.2013.10.001. Epub 2013 Oct 29. Prog Neurobiol. 2014. PMID: 24184323 Review.
-
Maturation of rhythmic neural network: role of central modulatory inputs.J Physiol Paris. 2003 Jan;97(1):59-68. doi: 10.1016/j.jphysparis.2003.10.007. J Physiol Paris. 2003. PMID: 14706691 Review.
Cited by
-
Neuronal network complexity can strengthens activity robustness.Proc Natl Acad Sci U S A. 2023 Aug;120(31):e2309988120. doi: 10.1073/pnas.2309988120. Epub 2023 Jul 24. Proc Natl Acad Sci U S A. 2023. PMID: 37487073 Free PMC article. No abstract available.
-
Analysis of Family Structures Reveals Robustness or Sensitivity of Bursting Activity to Parameter Variations in a Half-Center Oscillator (HCO) Model.eNeuro. 2016 Aug 30;3(4):ENEURO.0015-16.2016. doi: 10.1523/ENEURO.0015-16.2016. eCollection 2016 Jul-Aug. eNeuro. 2016. PMID: 27595135 Free PMC article.
-
Computational implications of biophysical diversity and multiple timescales in neurons and synapses for circuit performance.Curr Opin Neurobiol. 2016 Apr;37:44-52. doi: 10.1016/j.conb.2015.12.008. Epub 2016 Jan 15. Curr Opin Neurobiol. 2016. PMID: 26774694 Free PMC article. Review.
-
Robust and tunable bursting requires slow positive feedback.J Neurophysiol. 2018 Mar 1;119(3):1222-1234. doi: 10.1152/jn.00804.2017. Epub 2017 Dec 13. J Neurophysiol. 2018. PMID: 29357476 Free PMC article.
-
Switchable slow cellular conductances determine robustness and tunability of network states.PLoS Comput Biol. 2018 Apr 23;14(4):e1006125. doi: 10.1371/journal.pcbi.1006125. eCollection 2018 Apr. PLoS Comput Biol. 2018. PMID: 29684009 Free PMC article.
References
-
- Angstadt JD, Grassmann JL, Theriault KM, Levasseur SM. Mechanisms of postinhibitory rebound and its modulation by serotonin in excitatory swim motor neurons of the medicinal leech. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191: 715–732, 2005. - PubMed
-
- Brown TG. The intrinsic factors in the act of progression in the mammal. Proc R Soc Lond B 84: 308–319, 1911.
-
- Butera RJ Jr, Rinzel J, Smith JC. Models of respiratory rhythm generation in the prebötzinger complex. II. Populations of coupled pacemaker neurons. J Neurophysiol 82: 398–415, 1999. - PubMed
-
- Calabrese RL, De Schutter E. Motor-pattern-generating networks in invertebrates: modeling our way toward understanding. Trends Neurosci 15: 439–445, 1992. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources