Relationships Between Mitochondria and Neuroinflammation: Implications for Alzheimer's Disease
- PMID: 26311426
- PMCID: PMC5480219
- DOI: 10.2174/1568026615666150827095102
Relationships Between Mitochondria and Neuroinflammation: Implications for Alzheimer's Disease
Abstract
Mitochondrial dysfunction and neuroinflammation occur in Alzheimer's disease (AD). The causes of these pathologic lesions remain uncertain, but links between these phenomena are increasingly recognized. In this review, we discuss data that indicate mitochondria or mitochondrial components may contribute to neuroinflammation. While mitochondrial dysfunction could cause neuroinflammation, neuroinflammation could also cause mitochondrial dysfunction. However, based on the systemic nature of AD mitochondrial dysfunction as well as data from experiments we discuss, the former possibility is perhaps more likely. If correct, then manipulation of mitochondria, either directly or through manipulations of bioenergetic pathways, could prove effective in reducing metabolic dysfunction and neuroinflammation in AD patients. We also review some potential approaches through which such manipulations may be achieved.
Figures



References
-
- Bosetti F, Brizzi F, Barogi S, Mancuso M, Siciliano G, Tendi EA, Murri L, Rapoport SI, Solaini G. Cytochrome c oxidase and mitochondrial F1F0-ATPase (ATP synthase) activities in platelets and brain from patients with Alzheimer’s disease. Neurobiology of aging. 2002;23(3):371–376. - PubMed
-
- Cardoso SM, Santana I, Swerdlow RH, Oliveira CR. Mitochondria dysfunction of Alzheimer’s disease cybrids enhances Abeta toxicity. Journal of neurochemistry. 2004;89(6):1417–1426. - PubMed
-
- Khan SM, Cassarino DS, Abramova NN, Keeney PM, Borland MK, Trimmer PA, Krebs CT, Bennett JC, Parks JK, Swerdlow RH, Parker WD, Jr, Bennett JP., Jr Alzheimer’s disease cybrids replicate beta-amyloid abnormalities through cell death pathways. Annals of neurology. 2000;48(2):148–155. - PubMed
-
- Maurer I, Zierz S, Moller HJ. A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients. Neurobiology of aging. 2000;21(3):455–462. - PubMed
-
- Onyango IG, Bennett JP, Jr, Tuttle JB. Endogenous oxidative stress in sporadic Alzheimer’s disease neuronal cybrids reduces viability by increasing apoptosis through pro-death signaling pathways and is mimicked by oxidant exposure of control cybrids. Neurobiology of disease. 2005(19):1–2. 312–322. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical