Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Oct 29:307:26-36.
doi: 10.1016/j.neuroscience.2015.08.039. Epub 2015 Aug 24.

The keystone of Alzheimer pathogenesis might be sought in Aβ physiology

Affiliations
Review

The keystone of Alzheimer pathogenesis might be sought in Aβ physiology

D Puzzo et al. Neuroscience. .

Abstract

For several years Amyloid-beta peptide (Aβ) has been considered the main pathogenetic factor of Alzheimer's disease (AD). According to the so called Amyloid Cascade Hypothesis the increase of Aβ triggers a series of events leading to synaptic dysfunction and memory loss as well as to the structural brain damage in the later stage of the disease. However, several evidences suggest that this hypothesis is not sufficient to explain AD pathogenesis, especially considering that most of the clinical trials aimed to decrease Aβ levels have been unsuccessful. Moreover, Aβ is physiologically produced in the healthy brain during neuronal activity and it is needed for synaptic plasticity and memory. Here we propose a model interpreting AD pathogenesis as an alteration of the negative feedback loop between Aβ and its physiological receptors, focusing on alpha7 nicotinic acetylcholine receptors (α7-nAchRs). According to this vision, when Aβ cannot exert its physiological function a negative feedback mechanism would induce a compensatory increase of its production leading to an abnormal accumulation that reduces α7-nAchR function, leading to synaptic dysfunction and memory loss. In this perspective, the indiscriminate Aβ removal might worsen neuronal homeostasis, causing a further impoverishment of learning and memory. Even if further studies are needed to better understand and validate these mechanisms, we believe that to deepen the role of Aβ in physiological conditions might represent the keystone to elucidate important aspects of AD pathogenesis.

Keywords: Alzheimer’s disease; Amyloid-beta peptide; memory; nAchRs; synaptic plasticity.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Abramov E, Dolev I, Fogel H, Ciccotosto GD, Ruff E, Slutsky I. Amyloid-beta as a positive endogenous regulator of release probability at hippocampal synapses. Nat Neurosci. 2009;12:1567–76. - PubMed
    1. Aho L, Pikkarainen M, Hiltunen M, Leinonen V, Alafuzoff I. Immunohistochemical visualization of amyloid-beta protein precursor and amyloid-beta in extra-and intracellular compartments in the human brain. J Alzheimers Dis. 2010;20:1015–28. - PubMed
    1. Albuquerque EX, Pereira EF, Alkondon M, Rogers SW. Mammalian nicotinic acetylcholine receptors: From structure to function. Physiol Rev. 2009;89:73–120. - PMC - PubMed
    1. Allinquant B, Hantraye P, Mailleux P, Moya K, Bouillot C, Prochiantz A. Downregulation of amyloid precursor protein inhibits neurite outgrowth in vitro. J Cell Biol. 1995;128:919–27. - PMC - PubMed
    1. Andreasen N, Hesse C, Davidsson P, Minthon L, Wallin A, Winblad B, Vanderstichele H, Vanmechelen E, Blennow K. Cerebrospinal fluid beta-amyloid(1-42) in Alzheimer disease: differences between early-and late-onset Alzheimer disease and stability during the course of disease. Arch Neurol. 1999;56:673–80. - PubMed

Publication types

MeSH terms

Substances