Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Mar 1:135:132-140.
doi: 10.1016/j.jprot.2015.08.008. Epub 2015 Aug 25.

Paralytic shellfish toxin biosynthesis in cyanobacteria and dinoflagellates: A molecular overview

Affiliations
Review

Paralytic shellfish toxin biosynthesis in cyanobacteria and dinoflagellates: A molecular overview

Da-Zhi Wang et al. J Proteomics. .

Abstract

Paralytic shellfish toxins (PSTs) are a group of water soluble neurotoxic alkaloids produced by two different kingdoms of life, prokaryotic cyanobacteria and eukaryotic dinoflagellates. Owing to the wide distribution of these organisms, these toxic secondary metabolites account for paralytic shellfish poisonings around the world. On the other hand, their specific binding to voltage-gated sodium channels makes these toxins potentially useful in pharmacological and toxicological applications. Much effort has been devoted to the biosynthetic mechanism of PSTs, and gene clusters encoding 26 proteins involved in PST biosynthesis have been unveiled in several cyanobacterial species. Functional analysis of toxin genes indicates that PST biosynthesis in cyanobacteria is a complex process including biosynthesis, regulation, modification and export. However, less is known about the toxin biosynthesis in dinoflagellates owing to our poor understanding of the massive genome and unique chromosomal characteristics [1]. So far, few genes involved in PST biosynthesis have been identified from dinoflagellates. Moreover, the proteins involved in PST production are far from being totally explored. Thus, the origin and evolution of PST biosynthesis in these two kingdoms are still controversial. In this review, we summarize the recent progress on the characterization of genes and proteins involved in PST biosynthesis in cyanobacteria and dinoflagellates, and discuss the standing evolutionary hypotheses concerning the origin of toxin biosynthesis as well as future perspectives in PST biosynthesis.

Scientific question: Paralytic shellfish toxins (PSTs) are a group of potent neurotoxins which specifically block voltage-gated sodium channels in excitable cells and result in paralytic shellfish poisonings (PSPs) around the world. Two different kingdoms of life, cyanobacteria and dinoflagellates are able to produce PSTs. However, in contrast with cyanobacteria, our understanding of PST biosynthesis in dinoflagellates is extremely limited owing to their unique features. The origin and evolution of PST biosynthesis in these two kingdoms are still controversial.

Technical significance: High-throughput omics technologies, such as genomics, transcriptomics and proteomics provide powerful tools for the study of PST biosynthesis in cyanobacteria and dinoflagellates, and have shown their powerful potential with regard to revealing genes and proteins involved in PST biosynthesis in two kingdoms.

Scientific significance: This review summarizes the recent progress in PST biosynthesis in cyanobacteria and dinoflagellates with focusing on the novel insights from omics technologies, and discusses the evolutionary relationship of toxin biosynthesis genes between these two kingdoms.

Keywords: Cyanobacteria; Dinoflagellates; Evolution; Genes; Paralytic shellfish toxins; Proteins.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources