EARLY BUD-BREAK1 (EBB1) defines a conserved mechanism for control of bud-break in woody perennials
- PMID: 26317150
- PMCID: PMC4883858
- DOI: 10.1080/15592324.2015.1073873
EARLY BUD-BREAK1 (EBB1) defines a conserved mechanism for control of bud-break in woody perennials
Abstract
Bud-break is an environmentally and economically important trait in trees, shrubs and vines from temperate latitudes. Poor synchronization of bud-break timing with local climates can lead to frost injuries, susceptibility to pests and pathogens and poor crop yields in fruit trees and vines. The rapid climate changes outpace the adaptive capacities of plants to respond through natural selection. This is particularly true for trees which have long generation cycle and thus the adaptive changes are significantly delayed. Therefore, to devise appropriate breeding and conservation strategies, it is imperative to understand the molecular underpinnings that govern dormancy mechanisms. We have recently identified and characterized the poplar EARLY BUD-BREAK 1 (EBB1) gene. EBB1 is a positive regulator of bud-break and encodes a transcription factor from the AP2/ERF family. Here, using comparative and functional genomics approaches we show that EBB1 function in regulation of bud-break is likely conserved across wide range of woody perennial species with importance to forestry and agriculture.
Keywords: climate change; dormancy; phenology.
Figures


Similar articles
-
EARLY BUD-BREAK 1 and EARLY BUD-BREAK 3 control resumption of poplar growth after winter dormancy.Nat Commun. 2021 Feb 18;12(1):1123. doi: 10.1038/s41467-021-21449-0. Nat Commun. 2021. PMID: 33602938 Free PMC article.
-
EARLY BUD-BREAK 1 (EBB1) is a regulator of release from seasonal dormancy in poplar trees.Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):10001-6. doi: 10.1073/pnas.1405621111. Epub 2014 Jun 20. Proc Natl Acad Sci U S A. 2014. PMID: 24951507 Free PMC article.
-
Multilayer regulatory landscape and new regulators identification for bud dormancy release and bud break in Populus.Plant Cell Environ. 2024 Aug;47(8):3181-3197. doi: 10.1111/pce.14938. Epub 2024 May 7. Plant Cell Environ. 2024. PMID: 38712996
-
Wake up: the regulation of dormancy release and bud break in perennial plants.Front Plant Sci. 2025 Mar 6;16:1553953. doi: 10.3389/fpls.2025.1553953. eCollection 2025. Front Plant Sci. 2025. PMID: 40115948 Free PMC article. Review.
-
The embryonic shoot: a lifeline through winter.J Exp Bot. 2014 Apr;65(7):1699-712. doi: 10.1093/jxb/ert413. Epub 2013 Dec 24. J Exp Bot. 2014. PMID: 24368502 Review.
Cited by
-
Integrating Genome-Wide Association Analysis With Transcriptome Sequencing to Identify Candidate Genes Related to Blooming Time in Prunus mume.Front Plant Sci. 2021 Jul 15;12:690841. doi: 10.3389/fpls.2021.690841. eCollection 2021. Front Plant Sci. 2021. PMID: 34335659 Free PMC article.
-
Molecular advances in bud dormancy in trees.J Exp Bot. 2024 Oct 16;75(19):6063-6075. doi: 10.1093/jxb/erae183. J Exp Bot. 2024. PMID: 38650362 Free PMC article. Review.
-
Engineering Tree Seasonal Cycles of Growth Through Chromatin Modification.Front Plant Sci. 2019 Apr 5;10:412. doi: 10.3389/fpls.2019.00412. eCollection 2019. Front Plant Sci. 2019. PMID: 31024588 Free PMC article.
-
Photoperiod- and temperature-mediated control of growth cessation and dormancy in trees: a molecular perspective.Ann Bot. 2017 Sep 1;120(3):351-360. doi: 10.1093/aob/mcx061. Ann Bot. 2017. PMID: 28605491 Free PMC article. Review.
-
The bud dormancy disconnect: latent buds of grapevine are dormant during summer despite a high metabolic rate.J Exp Bot. 2022 Apr 5;73(7):2061-2076. doi: 10.1093/jxb/erac001. J Exp Bot. 2022. PMID: 35022731 Free PMC article.
References
-
- Rohde A, Bhalerao RP. Plant dormancy in the perennial context. Trends Plant Sci 2007; 12:217-23; PMID:17416545; http://dx.doi.org/10.1016/j.tplants.2007.03.012 - DOI - PubMed
-
- Horvath DP, Anderson JV, Chao WS, Foley ME. Knowing when to grow: Signals regulating bud dormancy. Trends Plant Sci 2003; 8:534-40; PMID:14607098; http://dx.doi.org/10.1016/j.tplants.2003.09.013 - DOI - PubMed
-
- Cooke JEK, Eriksson ME, Junttila O. The dynamic nature of bud dormancy in trees: Environmental control and molecular mechanisms. Plant Cell Environm 2012; 35:1707-28; PMID:22670814; http://dx.doi.org/10.1111/j.1365-3040.2012.02552.x - DOI - PubMed
-
- Brunner AM, Evans LM, Hsu CY, Sheng X. Vernalization and the chilling requirement to exit bud dormancy: shared or separate regulation?. Front Plant Sci 2014; 5:732; PMID:25566302; http://dx.doi.org/10.3389/fpls.2014.00732 - DOI - PMC - PubMed
-
- Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S. Adaptation, migration or extirpation: Climate change outcomes for tree populations. Evol Appl 2008; 1:95-111; PMID:25567494; http://dx.doi.org/10.1111/j.1752-4571.2007.00013.x - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials