Hidden self-association of proteins
- PMID: 2631864
- DOI: 10.1002/jmr.300010404
Hidden self-association of proteins
Abstract
Sedimentation equilibrium measurements were carried out on solutions of bovine serum albumin, aldolase, and ovalbumin in phosphate-buffered saline, pH 7.2, at 10 degrees C. The data obtained for each protein were analyzed to yield the dependence of apparent weight-average molecular weight upon protein concentration, over a concentration range of ca 1-200 g/L. Using the approximate theory of Chatelier and Minton [1987) Biopolymers 26, 507-524), models are formulated for the dependence of apparent weight-average molecular weight upon concentration in non-ideal solutions containing proteins which may self-associate according to a monomer/n-mer or a monomer/dimer/tetramer scheme. The concentration dependence data for serum albumin may be accounted for, assuming either no self-association or weak monomer/dimer association. The data for aldolase may be accounted for assuming either weak monomer/dimer or weak monomer/trimer association. The data for ovalbumin may be accounted for assuming either weak monomer/trimer or weak monomer/dimer/tetramer association. The associations do not approach saturation at the highest concentrations studied, and the standard-state free energy changes accompanying self-association amount to less than 4 kcal/mol of intermolecular contacts, suggesting that non-specific clustering of protein molecules at high concentration rather than the formation of specific complexes is being observed.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous
