Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Aug 11:6:413.
doi: 10.3389/fimmu.2015.00413. eCollection 2015.

Narrowing the Gap: Preserving Repertoire Diversity Despite Clonal Selection during the CD4 T Cell Response

Affiliations
Review

Narrowing the Gap: Preserving Repertoire Diversity Despite Clonal Selection during the CD4 T Cell Response

Julia Merkenschlager et al. Front Immunol. .

Abstract

T cell immunity relies on the generation and maintenance of a diverse repertoire of T cell antigen receptors (TCRs). The strength of signaling emanating from the TCR dictates the fate of T cells during development, as well as during the immune response. Whereas development of new T cells in the thymus increases the available TCR repertoire, clonal selection during the immune response narrows TCR diversity through the outgrowth of clonotypes with the fittest TCR. To ensure maintenance of TCR diversity in the antigen-selected repertoire, specific mechanisms can be envisaged that facilitate the participation of T cell clonotypes with less than best fit TCRs. Here, we summarize the evidence for the existence of such mechanisms that can prevent the loss of diversity. A number of T cell-autonomous or extrinsic factors can reverse clonotypic hierarchies set by TCR affinity for given antigen. Although not yet complete, understanding of these factors and their mechanism of action will be critical in interventional attempts to mold the antigen-selected TCR repertoire.

Keywords: CD4 T cell; T cell response; TCR affinity; TCR repertoire; clonotypic diversity.

PubMed Disclaimer

Figures

Figure 1
Figure 1
A T cell’s behavior depends on the preimmune repertoire composition. A given clonotype (depicted in gray) with relatively low TCR affinity for the immunizing antigen will either fail to expand (in the presence of higher affinity competitors, Host 1), or participate in the response (when competition is weaker, Host 2).
Figure 2
Figure 2
Antigen-selected repertoire composition according to response kinetics. The high-affinity clonotype (depicted in red) will begin clonal expansion earlier than the low-affinity one (depicted in blue) as it is more sensitive to initially low antigen concentration during an infection. Clonal expansion will cease when eight antigen-reactive cells are produced (race finish). (A) When the lag-time between recruitment of the high- and low-affinity clonotypes is longer than time to expansion of high-affinity clonotype to eight cells, the response will comprise entirely of high-affinity progeny. This may arise when antigenic pMHCII is distributed over many APCs, each presenting at low density. Even though the threshold for activation of the low-affinity clonotype is eventually crossed, its expansion is actively suppressed (race is finished). (B) When the lag-time in recruitment is shorter than the time is takes to complete the race (in the case low precursor frequency or when antigen is sharply introduced and highly concentrated on few APCs), the final eight cells will contain a proportion of low-affinity progeny.
Figure 3
Figure 3
The balance of reactivity to self or antigen pMHCII complexes. The TCR of a given T cell may have high (red) or low (blue) affinity for self pMHCII (left side of the cell) or a particular antigenic pMHCII complex (right side of the cell). High affinity to either of these contributes positively to clonal expansion. (A) When all four possible (simplified) combinations are present, the clonotype that combines high affinity for self and for antigenic pMHCII will prevail. Selection of such clonotypes from large enough repertoires may create the impression that high affinity to self and antigen are positively correlated. (B) Between two clonotypes with equal affinity to self, the one with higher affinity to antigen will prevail. (C) Between two clonotypes with equal affinity to antigen, the one with higher affinity to self will prevail. (D) The outcome of competition between clonotypes one of which is high affinity for self and the other for antigen is currently difficult to predict.

References

    1. Davis MM, Bjorkman PJ. T-cell antigen receptor genes and T-cell recognition. Nature (1988) 334:395–402.10.1038/334395a0 - DOI - PubMed
    1. Murugan A, Mora T, Walczak AM, Callan CG, Jr. Statistical inference of the generation probability of T-cell receptors from sequence repertoires. Proc Natl Acad Sci U S A (2012) 109:16161–6.10.1073/pnas.1212755109 - DOI - PMC - PubMed
    1. Robins HS, Srivastava SK, Campregher PV, Turtle CJ, Andriesen J, Riddell SR, et al. Overlap and effective size of the human CD8+ T cell receptor repertoire. Sci Transl Med (2010) 2:47ra64.10.1126/scitranslmed.3001442 - DOI - PMC - PubMed
    1. Zarnitsyna VI, Evavold BD, Schoettle LN, Blattman JN, Antia R. Estimating the diversity, completeness, and cross-reactivity of the T cell repertoire. Front Immunol (2013) 4:485.10.3389/fimmu.2013.00485 - DOI - PMC - PubMed
    1. Nikolich-Zugich J, Slifka MK, Messaoudi I. The many important facets of T-cell repertoire diversity. Nat Rev Immunol (2004) 4:123–32.10.1038/nri1292 - DOI - PubMed