Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2015;26(16):1139-51.
doi: 10.1080/09205063.2015.1078930. Epub 2015 Sep 1.

Oriented nanofibrous silk as a natural scaffold for ocular epithelial regeneration

Affiliations
Comparative Study

Oriented nanofibrous silk as a natural scaffold for ocular epithelial regeneration

Esmaeil Biazar et al. J Biomater Sci Polym Ed. 2015.

Abstract

The aim of this study was to develop nanofibrous silk substrates for limbal stem cell expansion that can serve as a potential alternative substrate to replace human amniotic membrane. The human limbal stem cell was used to evaluate the biocompatibility of substrates (random and oriented nanofibrous mats, and human amniotic membrane) based on their phenotypic profile, viability, proliferation, and attachment ability. Biocompatibility results indicated that all substrates were highly biocompatible, as limbal stem cells could favorably attach and proliferate on the nanofibrous surfaces. Microscopic figures showed that the human limbal stem cells were firmly anchored to the substrates and were able to retain a normal corneal stem cell phenotype. Microscopic analyses illustrated that cells infiltrated the nanofibers and successfully formed a three-dimensional corneal epithelium, which was viable for 15 days. Immunocytochemistry and real-time PCR results revealed no change in the expression profile of limbal stem cells grown on nanofibrous substrates when compared to those grown on human amniotic membrane. In addition, electrospun nanofibrous silk substrates especially oriented mat provides not only a milieu supporting limbal stem cells expansion, but also serve as a useful alternative carrier for ocular surface tissue engineering and could be used as an alternative substrate to amniotic membrane.

Keywords: cellular analyses; limbal stem cells; nanofibrous scaffold; orientation; silk.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources