Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Apr 24;84(17-18):606-14.

Chromium attenuates hepatic damage in a rat model of chronic cholestasis

  • PMID: 26324991

Chromium attenuates hepatic damage in a rat model of chronic cholestasis

Wen-Ying Chen et al. Life Sci. .

Abstract

Aims: Oxidative stress is involved in cholestasis-induced hepatic damage. Therefore, antioxidant therapy is a recommended therapeutic strategy. Studies have illustrated that chromium can enhance antioxidative capacity leading to a resolution of oxidative stress. The aim of this study was to assess whether chromium has protective effects against cholestasis-related liver damage.

Main methods: Cholestasis was produced by bile duct ligation (BDL) in male Sprague–Dawley rats for 3 weeks. Rats were randomly divided into four groups. Control and BDL groups were subjected to sham and BDL operation, respectively, and were supplemented with placebo for 3 weeks. The BDL-post Cr group was supplemented with chromium chloride for 3 weeks after BDL operation. The BDL-pre Cr group was supplemented with chromium chloride for 6 weeks starting from 3 weeks before BDL operation.

Key findings: In comparison with the control group, the BDL group showed hepatic damage as evidenced by elevation in serum biochemicals, ductular reaction, and fibrosis. These pathophysiological changes were attenuated in the BDL-Pre Cr and BDL-Post Cr groups. However, there was no significant difference between these two groups. The anti-fibrotic effect of chromium was accompanied by reductions in α-smooth muscle actin-positive matrix-producing cells and Smad 2/3 activity critical to the fibrogenic potential of transforming growth factor beta 1 (TGF-β1). In addition, chromium effectively attenuated BDL-induced hepatic oxidative stress.

Significance: The data indicate that chromium attenuates BDL-induced cholestatic liver injury, bile duct proliferation, and fibrosis. The hepatoprotective effect of chromium is associated with antioxidative potential.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms