Quantum Size Effect in Organometal Halide Perovskite Nanoplatelets
- PMID: 26327242
- DOI: 10.1021/acs.nanolett.5b02985
Quantum Size Effect in Organometal Halide Perovskite Nanoplatelets
Abstract
Organometal halide perovskites have recently emerged displaying a huge potential for not only photovoltaic, but also light emitting applications. Exploiting the optical properties of specifically tailored perovskite nanocrystals could greatly enhance the efficiency and functionality of applications based on this material. In this study, we investigate the quantum size effect in colloidal organometal halide perovskite nanoplatelets. By tuning the ratio of the organic cations used, we can control the thickness and consequently the photoluminescence emission of the platelets. Quantum mechanical calculations match well with the experimental values. We find that not only do the properties of the perovskite, but also those of the organic ligands play an important role. Stacking of nanoplatelets leads to the formation of minibands, further shifting the bandgap energies. In addition, we find a large exciton binding energy of up to several hundreds of meV for nanoplatelets thinner than three unit cells, partially counteracting the blueshift induced by quantum confinement. Understanding of the quantum size effects in perovskite nanoplatelets and the ability to tune them provide an additional method with which to manipulate the optical properties of organometal halide perovskites.
Keywords: Perovskite; nanoplatelets; photoluminescence; quantum size effect.
Similar articles
-
Colloidal Metal-Halide Perovskite Nanoplatelets: Thickness-Controlled Synthesis, Properties, and Application in Light-Emitting Diodes.Adv Mater. 2022 Mar;34(10):e2107105. doi: 10.1002/adma.202107105. Epub 2022 Jan 28. Adv Mater. 2022. PMID: 34775643 Review.
-
Dilution-Induced Formation of Hybrid Perovskite Nanoplatelets.ACS Nano. 2016 Dec 27;10(12):10936-10944. doi: 10.1021/acsnano.6b05649. Epub 2016 Dec 2. ACS Nano. 2016. PMID: 28024369
-
High-Efficiency Light-Emitting Diodes of Organometal Halide Perovskite Amorphous Nanoparticles.ACS Nano. 2016 Jul 26;10(7):6623-30. doi: 10.1021/acsnano.6b01540. Epub 2016 Jun 21. ACS Nano. 2016. PMID: 27284993
-
Boosting Tunable Blue Luminescence of Halide Perovskite Nanoplatelets through Postsynthetic Surface Trap Repair.Nano Lett. 2018 Aug 8;18(8):5231-5238. doi: 10.1021/acs.nanolett.8b02190. Epub 2018 Jul 16. Nano Lett. 2018. PMID: 29990435
-
The Scale Effects of Organometal Halide Perovskites.Nanomaterials (Basel). 2023 Nov 13;13(22):2935. doi: 10.3390/nano13222935. Nanomaterials (Basel). 2023. PMID: 37999290 Free PMC article. Review.
Cited by
-
The role of Pb oxidation state of the precursor in the formation of 2D perovskite microplates.Nanoscale. 2023 Mar 30;15(13):6285-6294. doi: 10.1039/d2nr06509f. Nanoscale. 2023. PMID: 36911989 Free PMC article.
-
Nanostructure Optimization of Platinum-Based Nanomaterials for Catalytic Applications.Nanomaterials (Basel). 2018 Nov 17;8(11):949. doi: 10.3390/nano8110949. Nanomaterials (Basel). 2018. PMID: 30453623 Free PMC article. Review.
-
Spacer Cation Alloying in Ruddlesden-Popper Perovskites for Efficient Red Light-Emitting Diodes with Precisely Tunable Wavelengths.Adv Mater. 2021 Dec;33(49):e2104381. doi: 10.1002/adma.202104381. Epub 2021 Oct 10. Adv Mater. 2021. PMID: 34632623 Free PMC article.
-
Efficient perovskite light-emitting diodes based on a solution-processed tin dioxide electron transport layer.J Mater Chem C Mater. 2018 Jul 14;6(26):6996-7002. doi: 10.1039/c8tc01871e. Epub 2018 Jun 6. J Mater Chem C Mater. 2018. PMID: 30713691 Free PMC article.
-
Scalable photonic sources using two-dimensional lead halide perovskite superlattices.Nat Commun. 2020 Jan 20;11(1):387. doi: 10.1038/s41467-019-14084-3. Nat Commun. 2020. PMID: 31959755 Free PMC article.
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources