Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Sep 2:16:52.
doi: 10.1186/s12865-015-0116-x.

CD4(+)CD25(High) Treg cells in HIV/HTLV co-infected patients with neuropathy: high expression of Alpha4 integrin and lower expression of Foxp3 transcription factor

Affiliations

CD4(+)CD25(High) Treg cells in HIV/HTLV co-infected patients with neuropathy: high expression of Alpha4 integrin and lower expression of Foxp3 transcription factor

Raquel Matavele Chissumba et al. BMC Immunol. .

Abstract

Background: Regulatory CD4 T cells (Tregs) are critical in maintaining the homeostasis of the immune system. Quantitative or phenotypic alterations and functional impairment of Tregs have been associated with the development of pathologies including those of the central nervous system. Individuals with HIV-1/HTLV-1 co-infection are more prone to develop neurological complications. The aim of this study was to characterize phenotypically Treg cells in HIV-1/HTLV-1 co-infected Mozambican individuals presenting neurological symptoms.

Methods: A cross-sectional study was conducted among HIV-infected individuals presentingneurological symptoms, with and without HTLV co-infection, and blood donors. Peripheral bloodmononuclear cells were stained with monoclonal antibodies conjugated with fluorochromes to quantifyTregs and activated T cells by four colors flow cytometry.

Results: Higher Treg cell frequency (10.6%) was noted in HIV-1/HTLV-1 co-infected group with neurological symptoms when compared to HIV-1 mono-infected group with neurological symptoms (0.38%, p = 0.003) and control group (0.9%, p = 0.0105). An inverse correlation between Foxp3 and CD49d expression was observed in all study groups (rh = -0.71, p = 0.001). In addition, increased levels of Treg cells in co-infected patients were strongly associated with total activated CD4 T cells (rh = 0.8, p = 0.01).

Conclusion: Treg cells in co-infected patients present phenotypic alterations and might have dysfunction marked by low expression of Foxp3 and increased expression of molecules not frequently seen on Treg cells, such as CD49d. These alterations may be related to (1) changes in Treg cell trafficking and migration, possibly making those cells susceptible to HIV infection, and (2) inability to control the activation and proliferation of effector T lymphocytes.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Expression of CD25 in CD4+ lymphocytes and representative analysis of FoxP3. In (a) dot plot representing the regions, CD4+CD25Low and CD4+CD25High. In (b) graphics representing the same regions in “a” in the different study groups control, HIV Neur and HIV/HTLV Neur. For each group we show the median of CD4+CD25High cells, in relation to the total number of lymphocytes. In (c) histograms representatives of FoxP3 expression within the CD4+CD25High region in the study groups. Control (n = 5): healthy individuals; HIV Neur (n = 8): HIV mono-infected group presenting neuropathy; HIV/HTLV Neur (n = 8): group co-infected by HIV-1 and HTLV-1 presenting neuropathy
Fig. 2
Fig. 2
Frequency of Treg cells. Median of Treg cells (CD4+CD25HighFoxp3+), expressed as percentage in relation of total number of lymphocytes, are shown for each group. Control (n = 4); HIV Neur (n = 7); HIV/HTLV Neur (n = 6). **p < 0.005
Fig. 3
Fig. 3
Density of FoxP3 in CD4+CD25High cells and their correlation with frequency of CD49d. In (a) median fluorescence intensity of CD4+CD25High and CD4+CD25Low cells from individuals of control (n = 4), HIV Neur (n = 7) and HIV/HTLV Neur (n = 6) groups. †, ‡ and ₣, difference statistically significant in relation to CD4+CD25Low cells from control group, HIV Neur and HIV/HTLV Neur, respectively. Note that there is a significant difference in the density of Foxp3 expression between CD4+CD25High and CD4+CD25Low cells in the same group. In (b) frequency of CD49d in Treg cells. *p < 0.05, **p < 0.001. In (c) correlation between CD49d and density of FoxP3 expression in CD4+CD25High cells, obtained as the median fluorescence intensity (MFI)
Fig. 4
Fig. 4
Correlation between the frequency of Treg cells and CD4+ activated lymphocytes. In a, b and c, correlation between the frequency of Treg cells and CD4 activated cells (CD4+HLA-DR+) in control HIV Neur and HIV/HTLV Neur groups. Only in co-infected group a positive correlation was seen

Similar articles

Cited by

References

    1. Bhatt NB, Gudo ES, Sema C, Bila D, Di Mattei P, Augusto O, et al. Loss of correlation between HIV viral load and CD4+ T-cell counts in HIV/HTLV-1 co-infection in treatment naive Mozambican patients. Int J STD AIDS. 2009;20(12):863–868. doi: 10.1258/ijsa.2008.008401. - DOI - PubMed
    1. Casseb J, de Oliveira AC, Vergara MP, Montanheiro P, Bonasser F, Meilman Ferreira C, et al. Presence of tropical spastic paraparesis/human T-cell lymphotropic virus type 1-associated myelopathy (TSP/HAM)-like among HIV-1-infected patients. J Med Virol. 2008;80(3):392–398. doi: 10.1002/jmv.21111. - DOI - PubMed
    1. Tulius Silva M, de Melo EO, Bezerra Leite AC, Araujo A. Neurological aspects of HIV/human T lymphotropic virus coinfection. AIDS Rev. 2009;11(2):71–78. - PubMed
    1. Gudo ES, Bhatt NB, Bila DR, Abreu CM, Tanuri A, Savino W, et al. Co-infection by human immunodeficiency virus type 1 (HIV-1) and human T cell leukemia virus type 1 (HTLV-1): does immune activation lead to a faster progression to AIDS? BMC Infect Dis. 2009;9:211. doi: 10.1186/1471-2334-9-211. - DOI - PMC - PubMed
    1. Kleinewietfeld M, Starke M, Di Mitri D, Borsellino G, Battistini L, Rotzschke O, et al. CD49d provides access to "untouched" human Foxp3+ Treg free of contaminating effector cells. Blood. 2009;113(4):827–836. doi: 10.1182/blood-2008-04-150524. - DOI - PubMed

Publication types

MeSH terms