Choice of Reference Serum Creatinine in Defining Acute Kidney Injury
- PMID: 26332325
- PMCID: PMC4618709
- DOI: 10.1159/000439144
Choice of Reference Serum Creatinine in Defining Acute Kidney Injury
Abstract
Background/aims: The study of acute kidney injury (AKI) has expanded with the increasing availability of electronic health records and the use of standardized definitions. Understanding the impact of AKI between settings is limited by heterogeneity in the selection of reference creatinine to anchor the definition of AKI. In this mini-review, we discuss different approaches used to select reference creatinine and their relative merits and limitations.
Methods: We reviewed the literature to obtain representative examples of published baseline creatinine definitions when pre-hospital data were not available, as well as literature evaluating the estimation of baseline renal function, using PubMed and reference back-tracing within known works.
Results: (1) Pre-hospital creatinine values are useful in determining reference creatinine, and in high-risk populations, the mean outpatient serum creatinine value 7-365 days before hospitalization closely approximates nephrology adjudication, (2) in patients without pre-hospital data, the eGFR 75 approach does not reliably estimate true AKI incidence in most at-risk populations, (3) using the lowest inpatient serum creatinine may be reasonable, especially in those with preserved kidney function, but may generously estimate AKI incidence and severity and miss community-acquired AKI that does not fully resolve, (4) using more specific definitions of AKI (e.g., KIDGO stages 2 and 3) may help to reduce the effects of misclassification when using surrogate values and (5) leveraging available clinical data may help refine the estimate of reference creatinine.
Conclusions: Choosing reference creatinine for AKI calculation is important for AKI classification and study interpretation. We recommend obtaining data on pre-hospital kidney function, wherever possible. In studies where surrogate estimates are used, transparency in how they are applied and discussion that informs the reader of potential biases should be provided. Further work to refine the estimation of reference creatinine is needed.
© 2015 S. Karger AG, Basel.
Conflict of interest statement
Figures

References
-
- Go AS, Parikh CR, Ikizler TA, Coca S, Siew ED, Chinchilli VM, Hsu CY, Garg AX, Zappitelli M, Liu KD, Reeves WB, Ghahramani N, Devarajan P, Faulkner GB, Tan TC, Kimmel PL, Eggers P, Stokes JB. The assessment, serial evaluation, and subsequent sequelae of acute kidney injury (assess-aki) study: Design and methods. BMC Nephrol. 2010;11:22. - PMC - PubMed
-
- Parikh CR, Coca SG, Thiessen-Philbrook H, Shlipak MG, Koyner JL, Wang Z, Edelstein CL, Devarajan P, Patel UD, Zappitelli M, Krawczeski CD, Passik CS, Swaminathan M, Garg AX. Postoperative biomarkers predict acute kidney injury and poor outcomes after adult cardiac surgery. Journal of the American Society of Nephrology : JASN. 2011;22:1748–1757. - PMC - PubMed
-
- Bagshaw SM, Uchino S, Cruz D, Bellomo R, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, Gibney N, Tolwani A, Oudemans-van Straaten HM, Ronco C, Kellum JA. A comparison of observed versus estimated baseline creatinine for determination of rifle class in patients with acute kidney injury. Nephrol Dial Transplant. 2009 - PubMed
-
- Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: The second international consensus conference of the acute dialysis quality initiative (adqi) group. Critical care. 2004;8:R204–212. - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous