Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2016 Jan 14;12(2):328-30; discussion 333-6.
doi: 10.1039/c5sm01662b.

Comment on "Curvature capillary migration of microspheres" by N. Sharifi-Mood, I. B. Liu and K. J. Stebe, Soft Matter, 2015, 11, 6768

Affiliations
Comment

Comment on "Curvature capillary migration of microspheres" by N. Sharifi-Mood, I. B. Liu and K. J. Stebe, Soft Matter, 2015, 11, 6768

P Galatola. Soft Matter. .

Abstract

In a recent paper, Nima Sharifi-Mood et al. analyzed the capillary insertion energy of a spherical colloid at the interface between a liquid and a vapor phase under equilibrium wetting conditions. They claim that, contrary to what previously found, the insertion energy would be zero up to corrections of order four in the deviatoric curvature of the interface. I show that this conclusion is incorrect and comes from the failure of the small angle approximation far from the colloid. Once this approximation is lifted, I recover the leading quadratic contribution first derived by Würger [A. Würger, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2006, 74, 041402]. This same approximation was employed by Lu Yao et al. [Lu Yao et al., J. Colloid Interface Sci., 2014, 449, 436] in the case of pinned contact lines. The resulting expression, which is used by Nima Sharifi-Mood et al. to analyze their experimental data, is off by a factor of two and misses a term quadratic in the deviatoric curvature.

PubMed Disclaimer

Comment on

LinkOut - more resources