Identifying Direct Protein Targets of Poly-ADP-Ribose Polymerases (PARPs) Using Engineered PARP Variants-Orthogonal Nicotinamide Adenine Dinucleotide (NAD+) Analog Pairs
- PMID: 26344237
- PMCID: PMC4562056
- DOI: 10.1002/9780470559277.ch140259
Identifying Direct Protein Targets of Poly-ADP-Ribose Polymerases (PARPs) Using Engineered PARP Variants-Orthogonal Nicotinamide Adenine Dinucleotide (NAD+) Analog Pairs
Abstract
Poly-ADP-ribose polymerases (PARPs) comprise a family of 17 distinct enzymes that catalyze the transfer of ADP-ribose from nicotinamide adenine dinucleotide (NAD+) to acceptor sites on protein targets. PARPs have been implicated in a number of essential signaling pathways regulating both normal cell function and pathophysiology. To understand the physiological role of each PARP family member in the cell we need to identify the direct targets for each unique PARP in a cellular context. PARP-family member-specific target identification is challenging because of their shared catalytic mechanism and functional redundancy. To address this challenge, we have engineered a PARP variant that efficiently uses an orthogonal NAD+ analog, an analog that endogenous PARPs cannot use, as a substrate for ADP-ribosylation. The protocols in this unit describe a general procedure for using engineered PARP variants-orthogonal NAD+ analog pairs for labeling and identifying the direct targets of the poly-subfamily of PARPs (PARPs 1-3, 5, and 6).
Keywords: ADP-ribose; ADP-ribosylation; ADPr; PARP; click chemistry; poly-ADP-ribose polymerase; post-translational modification; proteins.
Copyright © 2013 John Wiley & Sons, Inc. All rights reserved.
Figures



Similar articles
-
Using Clickable NAD+ Analogs to Label Substrate Proteins of PARPs.Methods Mol Biol. 2017;1608:95-109. doi: 10.1007/978-1-4939-6993-7_8. Methods Mol Biol. 2017. PMID: 28695506
-
Combining Chemical Genetics with Proximity-Dependent Labeling Reveals Cellular Targets of Poly(ADP-ribose) Polymerase 14 (PARP14).ACS Chem Biol. 2018 Oct 19;13(10):2841-2848. doi: 10.1021/acschembio.8b00567. Epub 2018 Sep 28. ACS Chem Biol. 2018. PMID: 30247868
-
Identifying Genomic Sites of ADP-Ribosylation Mediated by Specific Nuclear PARP Enzymes Using Click-ChIP.Methods Mol Biol. 2018;1813:371-387. doi: 10.1007/978-1-4939-8588-3_25. Methods Mol Biol. 2018. PMID: 30097881 Free PMC article.
-
Chemical genetic methodologies for identifying protein substrates of PARPs.Trends Biochem Sci. 2022 May;47(5):390-402. doi: 10.1016/j.tibs.2021.07.002. Epub 2021 Aug 5. Trends Biochem Sci. 2022. PMID: 34366182 Review.
-
PARPs and the DNA damage response.Carcinogenesis. 2012 Aug;33(8):1433-40. doi: 10.1093/carcin/bgs132. Epub 2012 Mar 19. Carcinogenesis. 2012. PMID: 22431722 Review.
Cited by
-
Forced Self-Modification Assays as a Strategy to Screen MonoPARP Enzymes.SLAS Discov. 2020 Mar;25(3):241-252. doi: 10.1177/2472555219883623. Epub 2019 Dec 19. SLAS Discov. 2020. PMID: 31855104 Free PMC article.
-
PARP2 controls double-strand break repair pathway choice by limiting 53BP1 accumulation at DNA damage sites and promoting end-resection.Nucleic Acids Res. 2017 Dec 1;45(21):12325-12339. doi: 10.1093/nar/gkx881. Nucleic Acids Res. 2017. PMID: 29036662 Free PMC article.
-
ADP-ribosylation of RNA and DNA: from in vitro characterization to in vivo function.Nucleic Acids Res. 2021 Apr 19;49(7):3634-3650. doi: 10.1093/nar/gkab136. Nucleic Acids Res. 2021. PMID: 33693930 Free PMC article. Review.
-
Identification of PARP12 Inhibitors By Virtual Screening and Molecular Dynamics Simulations.Front Pharmacol. 2022 Aug 9;13:847499. doi: 10.3389/fphar.2022.847499. eCollection 2022. Front Pharmacol. 2022. PMID: 36016564 Free PMC article.
-
Identifying Family-Member-Specific Targets of Mono-ARTDs by Using a Chemical Genetics Approach.Cell Rep. 2016 Jan 26;14(3):621-631. doi: 10.1016/j.celrep.2015.12.045. Epub 2016 Jan 7. Cell Rep. 2016. PMID: 26774478 Free PMC article.
References
-
- Abd Elmageed ZY, Naura AS, Errami Y, Zerfaoui M. The poly(ADP-ribose) polymerases (PARPs): new roles in intracellular transport. Cellular signalling. 2012;24:1–8. - PubMed
-
- Ame JC, Rolli V, Schreiber V, Niedergang C, Apiou F, Decker P, Muller S, Hoger T, Menissier-de Murcia J, de Murcia G. PARP-2, A novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase. The Journal of biological chemistry. 1999;274:17860–17868. - PubMed
-
- Augustin A, Spenlehauer C, Dumond H, Menissier-De Murcia J, Piel M, Schmit AC, Apiou F, Vonesch JL, Kock M, Bornens M, De Murcia G. PARP-3 localizes preferentially to the daughter centriole and interferes with the G1/S cell cycle progression. Journal of cell science. 2003;116:1551–1562. - PubMed
-
- Burkle A. Poly(ADP-ribosyl)ation, genomic instability, and longevity. Annals of the New York Academy of Sciences. 2000;908:126–132. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources