Functional Additive Mixed Models
- PMID: 26347592
- PMCID: PMC4560367
- DOI: 10.1080/10618600.2014.901914
Functional Additive Mixed Models
Abstract
We propose an extensive framework for additive regression models for correlated functional responses, allowing for multiple partially nested or crossed functional random effects with flexible correlation structures for, e.g., spatial, temporal, or longitudinal functional data. Additionally, our framework includes linear and nonlinear effects of functional and scalar covariates that may vary smoothly over the index of the functional response. It accommodates densely or sparsely observed functional responses and predictors which may be observed with additional error and includes both spline-based and functional principal component-based terms. Estimation and inference in this framework is based on standard additive mixed models, allowing us to take advantage of established methods and robust, flexible algorithms. We provide easy-to-use open source software in the pffr() function for the R-package refund. Simulations show that the proposed method recovers relevant effects reliably, handles small sample sizes well and also scales to larger data sets. Applications with spatially and longitudinally observed functional data demonstrate the flexibility in modeling and interpretability of results of our approach.
Keywords: Functional data analysis; P-splines; Smoothing; Varying coefficient models; functional principal component analysis.
Figures








References
-
- Abramovich F, Angelini C. Testing in mixed-effects FANOVA models. Journal of Statistical Planning and Inference. 2006;136(12):4326–4348.
-
- Antoniadis A, Sapatinas T. Estimation and inference in functional mixed-effects models. Computational Statistics & Data Analysis. 2007;51(10):4793–4813.
-
- Aston JAD, Chiou JM, Evans JP. Linguistic pitch analysis using functional principal component mixed effect models. Journal of the Royal Statistical Society: Series C (Applied Statistics) 2010;59(2):297–317.
-
- Basser P, Pajevic S, Pierpaoli C, Duda J. In vivo fiber tractography using DT-MRI data. Magnetic Resonance in Medicine. 2000;44:625–632. - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources