Current theoretical models fail to predict the topological complexity of the human genome
- PMID: 26347874
- PMCID: PMC4543886
- DOI: 10.3389/fmolb.2015.00048
Current theoretical models fail to predict the topological complexity of the human genome
Abstract
Understanding the folding of the human genome is a key challenge of modern structural biology. The emergence of chromatin conformation capture assays (e.g., Hi-C) has revolutionized chromosome biology and provided new insights into the three dimensional structure of the genome. The experimental data are highly complex and need to be analyzed with quantitative tools. It has been argued that the data obtained from Hi-C assays are consistent with a fractal organization of the genome. A key characteristic of the fractal globule is the lack of topological complexity (knotting or inter-linking). However, the absence of topological complexity contradicts results from polymer physics showing that the entanglement of long linear polymers in a confined volume increases rapidly with the length and with decreasing volume. In vivo and in vitro assays support this claim in some biological systems. We simulate knotted lattice polygons confined inside a sphere and demonstrate that their contact frequencies agree with the human Hi-C data. We conclude that the topological complexity of the human genome cannot be inferred from current Hi-C data.
Keywords: BFACF; DNA knotting; Hi-C; chromosome organization; equilibrium globule; lattice models.
Figures

Similar articles
-
Efficient Hi-C inversion facilitates chromatin folding mechanism discovery and structure prediction.Biophys J. 2023 Sep 5;122(17):3425-3438. doi: 10.1016/j.bpj.2023.07.017. Epub 2023 Jul 26. Biophys J. 2023. PMID: 37496267 Free PMC article.
-
Efficient Hi-C inversion facilitates chromatin folding mechanism discovery and structure prediction.bioRxiv [Preprint]. 2023 Jul 21:2023.03.17.533194. doi: 10.1101/2023.03.17.533194. bioRxiv. 2023. Update in: Biophys J. 2023 Sep 5;122(17):3425-3438. doi: 10.1016/j.bpj.2023.07.017. PMID: 36993500 Free PMC article. Updated. Preprint.
-
The biology and polymer physics underlying large-scale chromosome organization.Traffic. 2018 Feb;19(2):87-104. doi: 10.1111/tra.12539. Epub 2017 Dec 3. Traffic. 2018. PMID: 29105235 Free PMC article. Review.
-
The fractal globule as a model of chromatin architecture in the cell.Chromosome Res. 2011 Jan;19(1):37-51. doi: 10.1007/s10577-010-9177-0. Chromosome Res. 2011. PMID: 21274616 Free PMC article.
-
How the Genome Folds: The Biophysics of Four-Dimensional Chromatin Organization.Annu Rev Biophys. 2019 May 6;48:231-253. doi: 10.1146/annurev-biophys-052118-115638. Epub 2019 Mar 5. Annu Rev Biophys. 2019. PMID: 30835504 Review.
Cited by
-
DNA knots occur in intracellular chromatin.Nucleic Acids Res. 2018 Jan 25;46(2):650-660. doi: 10.1093/nar/gkx1137. Nucleic Acids Res. 2018. PMID: 29149297 Free PMC article.
-
Pathways of DNA unlinking: A story of stepwise simplification.Sci Rep. 2017 Sep 29;7(1):12420. doi: 10.1038/s41598-017-12172-2. Sci Rep. 2017. PMID: 28963549 Free PMC article.
-
Three-Color Chromosome Painting as Seen through the Eyes of mFISH: Another Look at Radiation-Induced Exchanges and Their Conversion to Whole-Genome Equivalency.Front Oncol. 2016 Mar 15;6:52. doi: 10.3389/fonc.2016.00052. eCollection 2016. Front Oncol. 2016. PMID: 27014627 Free PMC article.
-
ChromMovie: A Molecular Dynamics Approach for Simultaneous Modeling of Chromatin Conformation Changes from Multiple Single-Cell Hi-C Maps.bioRxiv [Preprint]. 2025 May 21:2025.05.16.654550. doi: 10.1101/2025.05.16.654550. bioRxiv. 2025. PMID: 40475498 Free PMC article. Preprint.
-
Advancements and future directions in single-cell Hi-C based 3D chromatin modeling.Comput Struct Biotechnol J. 2024 Oct 3;23:3549-3558. doi: 10.1016/j.csbj.2024.09.026. eCollection 2024 Dec. Comput Struct Biotechnol J. 2024. PMID: 39963420 Free PMC article. Review.
References
-
- Aragão de Carvalho C., Caracciolo S. (1983). A new Monte-Carlo approach to critical properties of self-avoiding random walks. J. Phys. 44, 323–331.
-
- Aragão de Carvalho C., Caracciolo S., Frolich J. (1983). Polymers and g|ϕ4| theory in four dimensions. Nucl. Phys. B 215, 209–248.
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources