Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Oct 2;80(19):9628-40.
doi: 10.1021/acs.joc.5b01384.

Asymmetric Redox-Annulation of Cyclic Amines

Affiliations

Asymmetric Redox-Annulation of Cyclic Amines

YoungKu Kang et al. J Org Chem. .

Abstract

Cyclic amines such as 1,2,3,4-tetrahydroisoquinoline undergo regiodivergent annulation reactions with 4-nitrobutyraldehydes. These redox-neutral transformations enable the asymmetric synthesis of highly substituted polycyclic ring systems in just two steps from commercial materials. The utility of this process is illustrated in a rapid synthesis of (-)-protoemetinol. Computational studies provide mechanistic insights and implicate the elimination of acetic acid from an ammonium nitronate intermediate as the rate-determining step.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Selected Natural Products with THIQ and Tryptoline Substructures
Scheme 2
Scheme 2. Redox-Annulation
Scheme 3
Scheme 3. Scope of the Asymmetric Redox-Annulation
Reactions were performed on a 0.6 mmol scale. For products 6a/7a6j/7j, yields correspond to combined, isolated yields of both diastereomers. For products 6kt, yields correspond to isolated yields of the major diastereomer.
Scheme 4
Scheme 4. Divergent Regioselectivity in the Asymmetric Redox-Annulation
Reactions were performed on a 0.6 mmol scale.
Scheme 5
Scheme 5. Synthesis of (−)-Protoemetinol
Scheme 6
Scheme 6. Calculated Free Energies for the Uncatalyzed and Acetic-Acid-Catalyzed Annulation Reactions and Selected Transition-State Structures [kcal mol–1, M06-2X-D3/def2-QZVP/IEFPCM//M06-L-D3/6-31+G(d,p)/IEFPCM]

References

    1. Kutchan T. M. Phytochemistry 1993, 32, 493.10.1016/S0031-9422(00)95128-8. - DOI - PubMed
    2. Cordell G. A. Phytochemistry 2013, 91, 29.10.1016/j.phytochem.2012.05.012. - DOI - PubMed
    1. For selected recent syntheses of the compounds shown in Scheme 1, see:

    2. Ihara M.; Yasui K.; Taniguchi N.; Fukumoto K. J. Chem. Soc., Perkin Trans. 1 1990, 1469.10.1039/p19900001469. - DOI
    3. Itoh T.; Yokoya M.; Miyauchi K.; Nagata K.; Ohsawa A. Org. Lett. 2006, 8, 1533.10.1021/ol0530575. - DOI - PubMed
    4. Mergott D. J.; Zuend S. J.; Jacobsen E. N. Org. Lett. 2008, 10, 745.10.1021/ol702781q. - DOI - PubMed
    5. Chang J.-K.; Chang B.-R.; Chuang Y.-H.; Chang N.-C. Tetrahedron 2008, 64, 9685.10.1016/j.tet.2008.07.110. - DOI
    6. Nuhant P.; Raikar S. B.; Wypych J.-C.; Delpech B.; Marazano C. J. Org. Chem. 2009, 74, 9413.10.1021/jo9019545. - DOI - PubMed
    7. English B. J.; Williams R. M. J. Org. Chem. 2010, 75, 7869.10.1021/jo101775n. - DOI - PMC - PubMed
    8. Sun X.; Ma D. Chem. - Asian J. 2011, 6, 2158.10.1002/asia.201100219. - DOI - PubMed
    9. Wanner M. J.; Claveau E.; van Maarseveen J. H.; Hiemstra H. Chem. - Eur. J. 2011, 17, 13680.10.1002/chem.201103150. - DOI - PubMed
    10. Zhang W.; Bah J.; Wohlfarth A.; Franzén J. Chem. - Eur. J. 2011, 17, 13814.10.1002/chem.201102012. - DOI - PubMed
    11. Herle B.; Wanner M. J.; van Maarseveen J. H.; Hiemstra H. J. Org. Chem. 2011, 76, 8907.10.1021/jo201657n. - DOI - PubMed
    12. Palframan M. J.; Parsons A. F.; Johnson P. Tetrahedron Lett. 2011, 52, 1154.10.1016/j.tetlet.2011.01.007. - DOI
    13. Lin S.; Deiana L.; Tseggai A.; Córdova A. Eur. J. Org. Chem. 2012, 2012, 398.10.1002/ejoc.201101296. - DOI
    14. Lebold T. P.; Wood J. L.; Deitch J.; Lodewyk M. W.; Tantillo D. J.; Sarpong R. Nat. Chem. 2012, 5, 126.10.1038/nchem.1528. - DOI - PMC - PubMed
    15. Moon H.; An H.; Sim J.; Kim K.; Paek S.-M.; Suh Y.-G. Tetrahedron Lett. 2015, 56, 608.10.1016/j.tetlet.2014.12.030. - DOI
    1. Examples from our laboratory:

    2. Zhang C.; De C. K.; Mal R.; Seidel D. J. Am. Chem. Soc. 2008, 130, 416.10.1021/ja077473r. - DOI - PubMed
    3. Zhang C.; Das D.; Seidel D. Chem. Sci. 2011, 2, 233.10.1039/C0SC00432D. - DOI
    4. Ma L.; Chen W.; Seidel D. J. Am. Chem. Soc. 2012, 134, 15305.10.1021/ja308009g. - DOI - PubMed
    5. Das D.; Sun A. X.; Seidel D. Angew. Chem., Int. Ed. 2013, 52, 3765.10.1002/anie.201300021. - DOI - PMC - PubMed
    6. Dieckmann A.; Richers M. T.; Platonova A. Y.; Zhang C.; Seidel D.; Houk K. N. J. Org. Chem. 2013, 78, 4132.10.1021/jo400483h. - DOI - PMC - PubMed
    7. Chen W.; Wilde R. G.; Seidel D. Org. Lett. 2014, 16, 730.10.1021/ol403431u. - DOI - PMC - PubMed
    8. Chen W.; Kang Y.; Wilde R. G.; Seidel D. Angew. Chem., Int. Ed. 2014, 53, 5179.10.1002/anie.201311165. - DOI - PMC - PubMed
    9. Richers M. T.; Breugst M.; Platonova A. Y.; Ullrich A.; Dieckmann A.; Houk K. N.; Seidel D. J. Am. Chem. Soc. 2014, 136, 6123.10.1021/ja501988b. - DOI - PMC - PubMed
    10. Chen W.; Seidel D. Org. Lett. 2014, 16, 3158.10.1021/ol501365j. - DOI - PMC - PubMed
    11. Jarvis C. L.; Richers M. T.; Breugst M.; Houk K. N.; Seidel D. Org. Lett. 2014, 16, 3556.10.1021/ol501509b. - DOI - PMC - PubMed
    1. Selected recent reviews on amine α-functionalization, including redox-neutral approaches:

    2. Campos K. R. Chem. Soc. Rev. 2007, 36, 1069.10.1039/b607547a. - DOI - PubMed
    3. Jazzar R.; Hitce J.; Renaudat A.; Sofack-Kreutzer J.; Baudoin O. Chem. - Eur. J. 2010, 16, 2654.10.1002/chem.200902374. - DOI - PubMed
    4. Mitchell E. A.; Peschiulli A.; Lefevre N.; Meerpoel L.; Maes B. U. W. Chem. - Eur. J. 2012, 18, 10092.10.1002/chem.201201539. - DOI - PubMed
    5. Prier C. K.; Rankic D. A.; MacMillan D. W. C. Chem. Rev. 2013, 113, 5322.10.1021/cr300503r. - DOI - PMC - PubMed
    6. Peng B.; Maulide N. Chem. - Eur. J. 2013, 19, 13274.10.1002/chem.201301522. - DOI - PubMed
    7. Wang L.; Xiao J. Adv. Synth. Catal. 2014, 356, 1137.10.1002/adsc.201301153. - DOI
    8. Girard S. A.; Knauber T.; Li C.-J. Angew. Chem., Int. Ed. 2014, 53, 74.10.1002/anie.201304268. - DOI - PubMed
    9. Vo C.-V. T.; Bode J. W. J. Org. Chem. 2014, 79, 2809.10.1021/jo5001252. - DOI - PubMed
    10. Haibach M. C.; Seidel D. Angew. Chem., Int. Ed. 2014, 53, 5010.10.1002/anie.201306489. - DOI - PubMed
    11. Seidel D. Acc. Chem. Res. 2015, 48, 317.10.1021/ar5003768. - DOI - PMC - PubMed
    1. Additional reviews covering various aspects of redox-neutral chemistry

    2. Burns N. Z.; Baran P. S.; Hoffmann R. W. Angew. Chem., Int. Ed. 2009, 48, 2854.10.1002/anie.200806086. - DOI - PubMed
    3. Mahatthananchai J.; Bode J. W. Acc. Chem. Res. 2014, 47, 696.10.1021/ar400239v. - DOI - PubMed
    4. Ketcham J. M.; Shin I.; Montgomery T. P.; Krische M. J. Angew. Chem., Int. Ed. 2014, 53, 9142.10.1002/anie.201403873. - DOI - PMC - PubMed
    5. Huang H.; Ji X.; Wu W.; Jiang H. Chem. Soc. Rev. 2015, 44, 1155.10.1039/C4CS00288A. - DOI - PubMed

Publication types

LinkOut - more resources