Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Sep 30;63(38):8501-9.
doi: 10.1021/acs.jafc.5b02551. Epub 2015 Sep 17.

Influence of the Oxidation States of 4-Methylcatechol and Catechin on the Oxidative Stability of β-Lactoglobulin

Affiliations

Influence of the Oxidation States of 4-Methylcatechol and Catechin on the Oxidative Stability of β-Lactoglobulin

Sisse Jongberg et al. J Agric Food Chem. .

Abstract

Chemical interactions between proteins and phenols affect the overall oxidative stability of a given biological system. To investigate the effect of protein-phenol adduct formation on the oxidative stability of β-lactoglobulin (β-LG), the protein was left to react with an equimolar concentration of 4-methylcatechol (4MC), catechin (Cat), or their respective quinone forms, 4-methylbenzoquinone (4MBQ) and catechin-quinone (CatQ), and subsequently subjected to metal-catalyzed oxidation by Fe(II)/H2O2 for 20 days at 37 °C. The reaction with 4MBQ resulted in 60% thiol loss and 22% loss of amino groups, whereas the addition of 4MC resulted in 12% thiol loss. The reaction with Cat or CatQ resulted in no apparent modification of β-LG. The oxidative stability of β-LG after reaction with each of 4MC, 4MBQ, Cat, or CatQ was impaired. Especially 4MC and 4MBQ were found to be pro-oxidative toward α-aminoadipic semialdehyde and γ-glutamic semialdehyde formation as well as the generation of fluorescent Schiff base products. The changes observed were ascribed to the redirection of oxidation as a result of the blocking of thiol groups but also to the oxidative deamination pathway, accelerating the production of semialdehydes and subsequently Schiff base structures.

Keywords: 4-methylcatechol; catechin; metal-catalyzed oxidation; protein oxidation; quinone; β-lactoglobulin.

PubMed Disclaimer

Publication types

LinkOut - more resources