Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Dec;161(2):77-88.
doi: 10.1016/j.clim.2015.09.004. Epub 2015 Sep 7.

Increased STAT3 phosphorylation on CD27(+) B-cells from common variable immunodeficiency disease patients

Affiliations

Increased STAT3 phosphorylation on CD27(+) B-cells from common variable immunodeficiency disease patients

Antonio Clemente et al. Clin Immunol. 2015 Dec.

Abstract

Maturation and differentiation of B-cells are driven by T-cells' help through IL-21/STAT3 axis in GC centers or through extrafollicular pathways, in a T-independent manner. B-cell differentiation is defective in common variable immunodeficiency disease (CVID) patients. We investigated if IL-21/STAT3 axis alterations could influence B-cell fate. We activated purified CVID B-cells with surrogate T-dependent (anti-CD40), T-independent (TLR-9 ligand) stimuli or through B-cell receptor engagement (anti-IgM) with or without IL-21. IL-21 mediated STAT3 activation was greater on CD27(-) than CD27(+) B-cells depending on the stimulus. IL-21 alone induced STAT3 phosphorylation (pSTAT3) only on CD27(-) B-cells and IL-21 induced higher pSTAT3 levels on CD27(-) than CD27(+) B-cells after anti-IgM or anti-CD40 activation. CVID CD27(+) B-cells showed selective STAT3 hyperphosphorylation after activation with anti-IgM or anti-CD40 alone and anti-IgM, anti-CD40 or ODN combined with IL-21. Increased STAT3 activation during immune responses could result in B-cell differentiation defects in CVID.

Keywords: B-cells; BCR; CD40; CVID; IL-21 co-stimulation; STAT3; TLR-9.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources