Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Sep 11;4(3):e108.
doi: 10.2196/resprot.4856.

The Walking Interventions Through Texting (WalkIT) Trial: Rationale, Design, and Protocol for a Factorial Randomized Controlled Trial of Adaptive Interventions for Overweight and Obese, Inactive Adults

Affiliations

The Walking Interventions Through Texting (WalkIT) Trial: Rationale, Design, and Protocol for a Factorial Randomized Controlled Trial of Adaptive Interventions for Overweight and Obese, Inactive Adults

Jane C Hurley et al. JMIR Res Protoc. .

Abstract

Background: Walking is a widely accepted and frequently targeted health promotion approach to increase physical activity (PA). Interventions to increase PA have produced only small improvements. Stronger and more potent behavioral intervention components are needed to increase time spent in PA, improve cardiometabolic risk markers, and optimize health.

Objective: Our aim is to present the rationale and methods from the WalkIT Trial, a 4-month factorial randomized controlled trial (RCT) in inactive, overweight/obese adults. The main purpose of the study was to evaluate whether intensive adaptive components result in greater improvements to adults' PA compared to the static intervention components.

Methods: Participants enrolled in a 2x2 factorial RCT and were assigned to one of four semi-automated, text message-based walking interventions. Experimental components included adaptive versus static steps/day goals, and immediate versus delayed reinforcement. Principles of percentile shaping and behavioral economics were used to operationalize experimental components. A Fitbit Zip measured the main outcome: participants' daily physical activity (steps and cadence) over the 4-month duration of the study. Secondary outcomes included self-reported PA, psychosocial outcomes, aerobic fitness, and cardiorespiratory risk factors assessed pre/post in a laboratory setting. Participants were recruited through email listservs and websites affiliated with the university campus, community businesses and local government, social groups, and social media advertising.

Results: This study has completed data collection as of December 2014, but data cleaning and preliminary analyses are still in progress. We expect to complete analysis of the main outcomes in late 2015 to early 2016.

Conclusions: The Walking Interventions through Texting (WalkIT) Trial will further the understanding of theory-based intervention components to increase the PA of men and women who are healthy, insufficiently active and are overweight or obese. WalkIT is one of the first studies focusing on the individual components of combined goal setting and reward structures in a factorial design to increase walking. The trial is expected to produce results useful to future research interventions and perhaps industry initiatives, primarily focused on mHealth, goal setting, and those looking to promote behavior change through performance-based incentives.

Trial registration: ClinicalTrials.gov NCT02053259; https://clinicaltrials.gov/ct2/show/NCT02053259 (Archived by WebCite at http://www.webcitation.org/6b65xLvmg).

Keywords: Fitbit; SMS; exercise; inactive; just in time adaptive interventions; mHealth; overweight; percentile schedule of reinforcement; text messaging.

PubMed Disclaimer

Conflict of interest statement

Conflicts of Interest: None declared.

Figures

Figure 1
Figure 1
Illustration of 2x2 factorial design.
Figure 2
Figure 2
Schematic for intensive adaptive intervention system.

References

    1. Beddhu S, Wei G, Marcus RL, Chonchol M, Greene T. Light-Intensity Physical Activities and Mortality in the United States General Population and CKD Subpopulation. Clin J Am Soc Nephrol. 2015 Jul 7;10(7):1145–53. doi: 10.2215/CJN.08410814.CJN.08410814 - DOI - PMC - PubMed
    1. Murtagh EM, Nichols L, Mohammed MA, Holder R, Nevill AM, Murphy MH. The effect of walking on risk factors for cardiovascular disease: an updated systematic review and meta-analysis of randomised control trials. Prev Med. 2015 Mar;72:34–43. doi: 10.1016/j.ypmed.2014.12.041.S0091-7435(15)00002-X - DOI - PubMed
    1. Conn VS, Hafdahl AR, Mehr DR. Interventions to increase physical activity among healthy adults: meta-analysis of outcomes. Am J Public Health. 2011 Apr;101(4):751–8. doi: 10.2105/AJPH.2010.194381. http://europepmc.org/abstract/MED/21330590 AJPH.2010.194381 - DOI - PMC - PubMed
    1. Champion Vl, Skinner Cs. The Health Belief Model. In: Glanz K, Rimer B, Viswanath K, editors. Health Behavior and Health Education: Theory, Research, and Practice. 4th ed. San Francisco: Jossey-Bass; 2008. pp. 45–66.
    1. McAlister A, Perry C, Parcel G. How Individuals, Environments, and Health Behaviors Interact: Social Cognitive Theory. In: Glanz K, Rimer B, Viswanath K, editors. Health Behavior and Health Education: Theory, Research, and Practice. 4th ed. San Francisco: Jossey-Bass; 2008. pp. 169–188.

Associated data

LinkOut - more resources