Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Sep 14;10(9):e0136672.
doi: 10.1371/journal.pone.0136672. eCollection 2015.

Absolute Reticulocyte Count Acts as a Surrogate for Fetal Hemoglobin in Infants and Children with Sickle Cell Anemia

Affiliations

Absolute Reticulocyte Count Acts as a Surrogate for Fetal Hemoglobin in Infants and Children with Sickle Cell Anemia

Emily Riehm Meier et al. PLoS One. .

Abstract

Hemoglobin switching is largely complete in humans by six months of age. Among infants with sickle cell anemia (HbSS, SCA), reticulocytosis begins early in life as fetal hemoglobin (HbF) is replaced by sickle hemoglobin (HbS). The objective of this study was to determine if absolute reticulocyte count (ARC) is related to HbF levels in a cohort of pediatric SCA patients. A convenience sample of 106 children with SCA between the ages of 1 month and 20 years who were not receiving hydroxyurea or monthly blood transfusions were enrolled in this observational study. Hematologic data, including ARC and HbF levels, were measured at steady state. F-cells were enumerated by flow cytometry. Initial studies compared infants with ARC greater than or equal to 200 K/μL (ARC ≥ 200) based upon the previously reported utility of this threshold as a predictive marker for SCA severity. Mean HbF and F-cell levels were significantly lower in the ARC ≥ 200 group when compared to the ARC < 200 group. Both HbF and F-cell percentages were negatively correlated to ARC in infants and in children between the ages of 1 and 9 years. However, the inverse relationship was lost after the age of 10 years. Overall, decreased expression and distribution of HbF during childhood SCA is well-correlated with increased reticulocyte production and release into the peripheral blood. As such, these data further support the clinical use of reticulocyte enumeration as a disease severity biomarker for childhood sickle cell anemia.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Relationship of ARC or Hemoglobin with HbF According to Age Group.
A-C: Correlation of HbF and ARC in patients with SCA who are less than 1 year of age, 1–9 years of age and 10–20 years old, respectively. D-F: Correlation of HbF and hemoglobin in the same age groups, respectively. HbF% is on the x-axis in each panel. Correlation coefficients (r) and p- values are shown in each panel. ARC, Absolute Reticulocyte Count; Hb, hemoglobin. Each dot represents a steady state value for a separate patient.
Fig 2
Fig 2. Relationship of ARC and F-cells by Age Group.
A. Correlation of F-cell % and ARC in infants with SCA (less than 1 year of age) at steady state. B. Same correlation with children with SCA who are between 1 and 9 years of age and C. between 10 and 20 years of age. ARC, Absolute Reticulocyte Count. Each dot represents a steady state value for a separate patient.
Fig 3
Fig 3. Representative Flow Dot Plots for Pancellular vs. Heterocellular HbF Distribution.
A. Erythrocytes from a 3 month old infant with SCA stained with fluorescent antibodies against HbF, revealing a pancellular HbF distribution. B. Representative F-cell staining from an older child with SCA, representative of heterocellular HbF distribution.
Fig 4
Fig 4. Comparison of F-cell and HbF levels in Infants and Children with ARC<200 K/μL and ARC ≥ 200K/μL.
A. F-cell level comparisons in infants less than 1 year of age and children between ages 1–9 years with an ARC < 200 K/μL (open bars) and ARC ≥ 200 K/μL (shaded bars) (*p = 6.2 E-5, **p = 1.7E-6). B. Comparison of HbF levels in infants and children ages 1–9 years and ARC < 200 K/μL (open bars) and ARC ≥ 200 K/μL (shaded bars) (*p = 2.2E-5,**p = 7.4E-7). Standard deviation bars are included.

References

    1. Platt OS, Brambilla DJ, Rosse WF, Milner PF, Castro O, Steinberg MH, et al. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N Engl J Med 1994;330:1639–1644. - PubMed
    1. Franco RS, Yasin Z, Palascak MB, Ciaolo P, Joiner CH, Rucknagel DL. The effect of fetal hemoglobin on the survival characteristics of sickle cells. Blood 2006;108:1073–1076. - PMC - PubMed
    1. Mabaera R, West RJ, Conine SJ, Macari ER, Boyd CD, Engman CA, et al. A cell stress signaling model of fetal hemoglobin induction: what doesn’t kill red blood cells may make them stronger. Exp Hematol 2008;36:1057–1072. 10.1016/j.exphem.2008.06.014 - DOI - PubMed
    1. Charache S, Terrin ML, Moore RD, Dover GJ, Barton FB, Eckert SV, et al. Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the Multicenter Study of Hydroxyurea in Sickle Cell Anemia. N Engl J Med 1995;332:1317–1322. - PubMed
    1. Perrine SP. Fetal globin stimulant therapies in the beta-hemoglobinopathies: principles and current potential. Pediatr Ann 2008;37:339–346. - PubMed

Publication types

Substances

LinkOut - more resources