Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Sep 14;10(9):e0137836.
doi: 10.1371/journal.pone.0137836. eCollection 2015.

The Invasive American Weed Parthenium hysterophorus Can Negatively Impact Malaria Control in Africa

Affiliations

The Invasive American Weed Parthenium hysterophorus Can Negatively Impact Malaria Control in Africa

Vincent O Nyasembe et al. PLoS One. .

Abstract

The direct negative effects of invasive plant species on agriculture and biodiversity are well known, but their indirect effects on human health, and particularly their interactions with disease-transmitting vectors, remains poorly explored. This study sought to investigate the impact of the invasive Neotropical weed Parthenium hysterophorus and its toxins on the survival and energy reserves of the malaria vector Anopheles gambiae. In this study, we compared the fitness of An. gambiae fed on three differentially attractive mosquito host plants and their major toxins; the highly aggressive invasive Neotropical weed Parthenium hysterophorus (Asteraceae) in East Africa and two other adapted weeds, Ricinus communis (Euphorbiaceae) and Bidens pilosa (Asteraceae). Our results showed that female An. gambiae fitness varied with host plants as females survived better and accumulated substantial energy reserves when fed on P. hysterophorus and R. communis compared to B. pilosa. Females tolerated parthenin and 1-phenylhepta-1, 3, 5-triyne, the toxins produced by P. hysterophorus and B. pilosa, respectively, but not ricinine produced by R. communis. Given that invasive plants like P. hysterophorus can suppress or even replace less competitive species that might be less suitable host-plants for arthropod disease vectors, the spread of invasive plants could lead to higher disease transmission. Parthenium hysterophorus represents a possible indirect effect of invasive plants on human health, which underpins the need to include an additional health dimension in risk-analysis modelling for invasive plants.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Probing and survival on intact plant.
A) Invasive weed, Parthenium hysterophorus, B) Female Anopheles gambiae probing on the flowers of P. hysterophorus, and C) Proportion of female An. gambiae surviving after exposure to different nutritional regimes. Glucose solution (6%) and water were used as positive and negative controls, respectively. The surviving mosquitoes from each treatment were censored on day 15 (survival curves marked + symbol).
Fig 2
Fig 2. Major secondary metabolites and their effect on An. gambiae survival.
A) Mass spectrum and chemical structures of three known plant metabolites detected in the mid-guts of mosquitoes: parthenin from P. hysterophorus; ricinine from R. communis, and phenylheptatriyne from B. pilosa; B) Proportion of female An. gambiae surviving after exposure to different plant toxins detected in mosquito mid-guts. Glucose solution (6%) and water were used as positive and negative controls, respectively, with the toxins dissolved in 6% glucose solution. The toxins were presented dissolved in 6% glucose solution and acetone. The surviving mosquitoes from each treatment were censored on day 8 (survival curves marked + symbol).
Fig 3
Fig 3. Energy reserves (sugar, glycogen and lipid content) of female An. gambiae exposed to different nutritional regimes after 7 days.
Bars capped with different letters are significantly different.

Similar articles

Cited by

References

    1. Dukes JS, Pontius J, Orwig D, Garnas JR, Rodgers VL, Brazee N, et al. Responses of insect pests, pathogens, and invasive plant species to climate change in the forests of northeastern North America: What can we predict? Can J Forest Res 2009; 39: 231–248.
    1. Lafferty KD. The ecology of climate change and infectious diseases. Ecology 2009; 90: 888–900. - PubMed
    1. Epstein PR, Diaz HF, Elias S, Grabherr G, Graham NE, Martens WJM, et al. Biological and physical signs of climate change: focus on mosquito-borne diseases. Bull Amer Meteorol Soc 1998; 79: 409–417.
    1. Vitousek PM, D’Antonio CM, Loope LL, Westbrooks R. Biological invasions as global environmental change. Amer Sci 1996; 84: 468–478.
    1. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, et al. Extinction risk from climate change. Nature 2004; 427: 145–148. - PubMed

Publication types

MeSH terms