Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Sep 15;9(1):22.
doi: 10.1186/s40246-015-0044-0.

Copy number alterations detected by whole-exome and whole-genome sequencing of esophageal adenocarcinoma

Affiliations

Copy number alterations detected by whole-exome and whole-genome sequencing of esophageal adenocarcinoma

Xiaoyu Wang et al. Hum Genomics. .

Abstract

Background: Esophageal adenocarcinoma (EA) is among the leading causes of cancer mortality, especially in developed countries. A high level of somatic copy number alterations (CNAs) accumulates over the decades in the progression from Barrett's esophagus, the precursor lesion, to EA. Accurate identification of somatic CNAs is essential to understand cancer development. Many studies have been conducted for the detection of CNA in EA using microarrays. Next-generation sequencing (NGS) technologies are believed to have advantages in sensitivity and accuracy to detect CNA, yet no NGS-based CNA detection in EA has been reported.

Results: In this study, we analyzed whole-exome (WES) and whole-genome sequencing (WGS) data for detecting CNA from a published large-scale genomic study of EA. Two specific comparisons were conducted. First, the recurrent CNAs based on WGS and WES data from 145 EA samples were compared to those found in five previous microarray-based studies. We found that the majority of the previously identified regions were also detected in this study. Interestingly, some novel amplifications and deletions were discovered using the NGS data. In particular, SKI and PRKCZ detected in a deletion region are involved in transforming growth factor-β pathway, suggesting the potential utility of novel biomarkers for EA. Second, we compared CNAs detected in WGS and WES data from the same 15 EA samples. No large-scale CNA was identified statistically more frequently by WES or WGS, while more focal-scale CNAs were detected by WGS than by WES.

Conclusions: Our results suggest that NGS can replace microarrays to detect CNA in EA. WGS is superior to WES in that it can offer finer resolution for the detection, though if the interest is on recurrent CNAs, WES can be preferable to WGS for its cost-effectiveness.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Segmented copy number ratio profiles in WES and WGS. The x-axis represents the samples. The y-axis represents the chromosomes. a WES data. b WGS data
Fig. 2
Fig. 2
Genomic positions of RCNAs detected in 145 WES data. The x-axis represents the normalized amplification signals (top) and significance by q value (bottom). The green line indicates the significance cutoff at q = 0.25. a Amplification regions. b Deletion regions
Fig. 3
Fig. 3
Genomic positions of RCNAs detected in 15 WGS data. The x-axis represents the normalized amplification signals (top) and significance by q value (bottom). The green line indicates the significance cutoff at q = 0.25. a Amplification regions. b Deletion regions

Similar articles

Cited by

References

    1. Nowell P. The clonal evolution of tumor cell populations. Science. 1976;194(4260):23–8. doi: 10.1126/science.959840. - DOI - PubMed
    1. Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481(7381):306–13. doi: 10.1038/nature10762. - DOI - PMC - PubMed
    1. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, et al. The landscape of somatic copy-number alteration across human cancers. Nature. 2010;463(7283):899–905. - PMC - PubMed
    1. Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B, et al. Pan-cancer patterns of somatic copy number alteration. Nat Genet. 2013;45(10):1134–40. - PMC - PubMed
    1. Greshock J, Feng B, Nogueira C, Ivanova E, Perna I, Nathanson K, et al. A comparison of DNA copy number profiling platforms. Cancer Res. 2007;67(21):10173–180. - PubMed

Publication types

MeSH terms

Substances