Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015;61(4):99-107.
doi: 10.2323/jgam.61.99.

Molecular characterization of a eukaryotic-like phenol hydroxylase from Corynebacterium glutamicum

Affiliations
Free article

Molecular characterization of a eukaryotic-like phenol hydroxylase from Corynebacterium glutamicum

Xiao Xiao et al. J Gen Appl Microbiol. 2015.
Free article

Abstract

This study focuses on the genetic and biochemical characterization of phenol hydroxylase (Phe, NCgl2588) from Corynebacterium glutamicum that shares 31% identity in amino acids with phenol hydroxylase from yeast Trichosporon cutaneum but less similarity with that from bacteria. The phe deletion mutant significantly reduced its ability to grow with phenol as the sole carbon and energy source. Expression of the phe gene was strongly induced with phenol and also subject to the control of carbon catabolite repression (CCR). The molecular weight of purified Phe protein determined by gel filtration chromatography was 70 kDa, indicating that Phe exists as a monomer in the purification condition. However, Phe protein pre-incubated with phenol showed a molecular weight of 140 kDa, suggesting that Phe is likely active as a dimer. In addition to phenol, the Phe protein could utilize various other phenolic compounds as substrates. Site-directed mutagenesis revealed that D75, P261, R262, R269, C349 and C476 are key amino acid residues closely related to the enzyme activity of Phe.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources