Targeting Inhibitor of Apoptosis Proteins Protects from Bleomycin-Induced Lung Fibrosis
- PMID: 26378893
- PMCID: PMC4821054
- DOI: 10.1165/rcmb.2015-0148OC
Targeting Inhibitor of Apoptosis Proteins Protects from Bleomycin-Induced Lung Fibrosis
Abstract
Accumulation of apoptosis-resistant fibroblasts is a hallmark of pulmonary fibrosis. We hypothesized that disruption of inhibitor of apoptosis protein (IAP) family proteins would limit lung fibrosis. We first show that transforming growth factor-β1 and bleomycin increase X-linked IAP (XIAP) and cellular IAP (cIAP)-1 and -2 in murine lungs and mesenchymal cells. Functional blockade of XIAP and the cIAPs with AT-406, an orally bioavailable second mitochondria-derived activator of caspases (Smac) mimetic, abrogated bleomycin-induced lung fibrosis when given both prophylactically and therapeutically. To determine whether the reduction in fibrosis was predominantly due to AT-406-mediated inhibition of XIAP, we compared the fibrotic response of XIAP-deficient mice (XIAP(-/y)) with littermate controls and found no difference. We found no alterations in total inflammatory cells of either wild-type mice treated with AT-406 or XIAP(-/y) mice. AT-406 treatment limited CCL12 and IFN-γ production, whereas XIAP(-/y) mice exhibited increased IL-1β expression. Surprisingly, XIAP(-/y) mesenchymal cells had increased resistance to Fas-mediated apoptosis. Functional blockade of cIAPs with AT-406 restored sensitivity to Fas-mediated apoptosis in XIAP(-/y) mesenchymal cells in vitro and increased apoptosis of mesenchymal cells in vivo, indicating that the increased apoptosis resistance in XIAP(-/y) mesenchymal cells was the result of increased cIAP expression. Collectively, these results indicate that: (1) IAPs have a role in the pathogenesis of lung fibrosis; (2) a congenital deficiency of XIAP may be overcome by compensatory mechanisms of other IAPs; and (3) broad functional inhibition of IAPs may be an effective strategy for the treatment of lung fibrosis by promoting mesenchymal cell apoptosis.
Keywords: X-linked inhibitor of apoptosis protein; fibroblast; fibrocyte; mesenchymal; second mitochondria-derived activator of caspases/direct inhibitor of apoptosis protein–binding protein with low pI.
Figures







References
-
- American Thoracic Society. Idiopathic pulmonary fibrosis: diagnosis and treatment. International consensus statement. American Thoracic Society (ATS) and the European Respiratory Society (ERS) Am J Respir Crit Care Med. 2000;161:646–664. - PubMed
-
- King TE, Jr, Pardo A, Selman M. Idiopathic pulmonary fibrosis. Lancet. 2011;378:1949–1961. - PubMed
-
- Hutchinson JP, McKeever TM, Fogarty AW, Navaratnam V, Hubbard RB. Increasing global mortality from idiopathic pulmonary fibrosis in the twenty-first century. Ann Am Thorac Soc. 2014;11:1176–1185. - PubMed
-
- Antoniou KM, Pataka A, Bouros D, Siafakas NM. Pathogenetic pathways and novel pharmacotherapeutic targets in idiopathic pulmonary fibrosis. Pulm Pharmacol Ther. 2007;20:453–461. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous