Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Oct 19;28(10):1961-74.
doi: 10.1021/acs.chemrestox.5b00161. Epub 2015 Oct 2.

DMSA-Coated Iron Oxide Nanoparticles Greatly Affect the Expression of Genes Coding Cysteine-Rich Proteins by Their DMSA Coating

Affiliations

DMSA-Coated Iron Oxide Nanoparticles Greatly Affect the Expression of Genes Coding Cysteine-Rich Proteins by Their DMSA Coating

Ling Zhang et al. Chem Res Toxicol. .

Abstract

The dimercaptosuccinic acid (DMSA) was widely used to coat iron oxide nanoparticles (FeNPs); however, its intracellular cytotoxicity remains to be adequately elucidated. This study analyzed the differentially expressed genes (DEGs) in four mammalian cells treated by a DMSA-coated magnetite FeNP at various doses at different times. The results revealed that about one-fourth of DEGs coded cysteine-rich proteins (CRPs) in all cells under each treatment, indicating that the nanoparticles greatly affected the expressions of CRP-coding genes. Additionally, about 26% of CRP-coding DEGs were enzyme genes in all cells, indicating that the nanoparticles greatly affected the expression of enzyme genes. Further experiments with the nanoparticles and a polyethylenimine (PEI)-coated magnetite FeNP revealed that the effect mainly resulted from DMSA carried into cells by the nanoparticles. This study thus first reported the cytotoxicity of DMSA at the gene transcription level as coating molecules of FeNPs. This study provides new insight into the molecular mechanism by which the DMSA-coated nanoparticles resulted in the transcriptional changes of many CRP-coding genes in cells. This study draws attention toward the intracellular cytotoxicity of DMSA as a coating molecule of nanoparticles, which has very low toxicity as an orally administered antidote due to its extracellular distribution.

PubMed Disclaimer

Publication types