Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Nov 2;12(11):3924-34.
doi: 10.1021/acs.molpharmaceut.5b00341. Epub 2015 Oct 1.

Multidrug Efflux Pumps Attenuate the Effect of MGMT Inhibitors

Affiliations

Multidrug Efflux Pumps Attenuate the Effect of MGMT Inhibitors

Karl-Heinz Tomaszowski et al. Mol Pharm. .

Abstract

Various mechanisms of drug resistance attenuate the effectiveness of cancer therapeutics, including drug transport and DNA repair. The DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT) is a key factor determining the resistance against alkylating anticancer drugs inducing the genotoxic DNA lesions O(6)-methylguanine and O(6)-chloroethylguanine, and MGMT inactivation or depletion renders cells more susceptible to treatment with methylating and chloroethylating agents. Highly specific and efficient inhibitors of the repair protein MGMT were designed, including O(6)-benzylguanine (O(6)BG) and O(6)-(4-bromothenyl)guanine (O(6)BTG) that are nontoxic on their own. Unfortunately, these inhibitors do not select between MGMT in normal and cancer cells, causing nontarget effects in the healthy tissue. Therefore, a targeting strategy for MGMT inhibitors is required. Here, we used O(6)BG and O(6)BTG conjugated to β-d-glucose (O(6)BG-Glu and O(6)BTG-Glu, respectively) in order to selectively inhibit MGMT in tumors, harnessing their high demand for glucose. Both glucose conjugates efficiently inhibited MGMT in several cancer cell lines, but with different extents of sensitization to DNA alkylating agents, with lomustine being more effective than temozolomide. We further show that the glucose conjugates are subject to ATP-binding cassette (ABC) transporter mediated efflux, involving P-glycoprotein, MRP1, and BCRP, which impacts the efficiency of MGMT inhibition. Surprisingly, also O(6)BG and O(6)BTG were subject to an active transport out of the cell. We also show that pharmacological inhibition of efflux transporters increases the induction of cell death following treatment with these MGMT inhibitors and temozolomide. We conclude that strategies of attenuating the efflux by ABC transporters are required for achieving successful MGMT targeting.

Keywords: ABC transporter; DNA repair; MGMT; drug targeting; inhibitors.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources