Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Sep 8;7(19):2202-8.
doi: 10.4254/wjh.v7.i19.2202.

Dendritic cells: The warriors upfront-turned defunct in chronic hepatitis C infection

Affiliations
Review

Dendritic cells: The warriors upfront-turned defunct in chronic hepatitis C infection

Meenakshi Sachdeva et al. World J Hepatol. .

Abstract

Hepatitis C virus (HCV) infection causes tremendous morbidity and mortality with over 170 million people infected worldwide. HCV gives rise to a sustained, chronic disease in the majority of infected individuals owing to a failure of the host immune system to clear the virus. In general, an adequate immune response is elicited by an efficient antigen presentation by dendritic cells (DCs), the cells that connect innate and adaptive immune system to generate a specific immune response against a pathogen. However, HCV seems to dysregulate the activity of DCs, making them less proficient antigen presenting cells for the optimal stimulation of virus-specific T cells, hence interfering with an optimal anti-viral immune response. There are discordant reports on the functional status of DCs in chronic HCV infection (CHC), from no phenotypic or functional defects to abnormal functions of DCs. Furthermore, the molecular mechanisms behind the impairment of DC function are even so not completely elucidated during CHC. Understanding the mechanisms of immune dysfunction would help in devising strategies for better management of the disease at the immunological level and help to predict the prognosis of the disease in the patients receiving antiviral therapy. In this review, we have discussed the outcomes of the interaction of DCs with HCV and the mechanisms of DC impairment during HCV infection with its adverse effects on the immune response in the infected host.

Keywords: Dendritic cells; Hepatitis C; Mechanism of functional impairment.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Proposed mechanism of dendritic cell impairment during chronic hepatitis infection and its relationship with antiviral therapy. Exposure of mo-DCs to HCV proteins ex vivo upregulated the expression of SOCS 3, IDO and PD-L1 that may be responsible for the observed maturation and activation defects in DCs including decreased secretion of IL-12 and IFNγ on LPS stimulation leading to the differentiation of Th2 cells. Such DCs also produced increased levels of IL-10 that promote the differentiation of regulatory T cells. Antiviral therapy along with some immunomodulation targeting these inhibitory molecules would help in the reconstitution of DC function in the antiviral therapy non-responders and would help to achieve SVR. SVR: Sustained virological response; NR: Non-responders to therapy; IL: Interleukin; IFN: Interferon; Th: T helper; SOCS: Suppressor of cytokine signalling; IDO: Indoleamine 2,3-dioxygenase; PD-L1: Programmed death ligand 1; LPS: Lipopolysaccharide; CHC: Chronic hepatitis C; DC: Dendritic cells; HCV: Hepatitis C virus; mo-DC: Monocyte-derived DCs; Treg: Regulatory T cells.

Similar articles

Cited by

References

    1. Alter MJ, Margolis HS, Krawczynski K, Judson FN, Mares A, Alexander WJ, Hu PY, Miller JK, Gerber MA, Sampliner RE. The natural history of community-acquired hepatitis C in the United States. The Sentinel Counties Chronic non-A, non-B Hepatitis Study Team. N Engl J Med. 1992;327:1899–1905. - PubMed
    1. Major ME, Dahari H, Mihalik K, Puig M, Rice CM, Neumann AU, Feinstone SM. Hepatitis C virus kinetics and host responses associated with disease and outcome of infection in chimpanzees. Hepatology. 2004;39:1709–1720. - PubMed
    1. Kantzanou M, Lucas M, Barnes E, Komatsu H, Dusheiko G, Ward S, Harcourt G, Klenerman P. Viral escape and T cell exhaustion in hepatitis C virus infection analysed using Class I peptide tetramers. Immunol Lett. 2003;85:165–171. - PubMed
    1. Large MK, Kittlesen DJ, Hahn YS. Suppression of host immune response by the core protein of hepatitis C virus: possible implications for hepatitis C virus persistence. J Immunol. 1999;162:931–938. - PubMed
    1. Kittlesen DJ, Chianese-Bullock KA, Yao ZQ, Braciale TJ, Hahn YS. Interaction between complement receptor gC1qR and hepatitis C virus core protein inhibits T-lymphocyte proliferation. J Clin Invest. 2000;106:1239–1249. - PMC - PubMed

LinkOut - more resources