Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Mar;65(3):755-67.
doi: 10.2337/db15-0473. Epub 2015 Sep 17.

Impaired Podocyte Autophagy Exacerbates Proteinuria in Diabetic Nephropathy

Affiliations

Impaired Podocyte Autophagy Exacerbates Proteinuria in Diabetic Nephropathy

Atsuko Tagawa et al. Diabetes. 2016 Mar.

Abstract

Overcoming refractory massive proteinuria remains a clinical and research issue in diabetic nephropathy. This study was designed to investigate the pathogenesis of massive proteinuria in diabetic nephropathy, with a special focus on podocyte autophagy, a system of intracellular degradation that maintains cell and organelle homeostasis, using human tissue samples and animal models. Insufficient podocyte autophagy was observed histologically in patients and rats with diabetes and massive proteinuria accompanied by podocyte loss, but not in those with no or minimal proteinuria. Podocyte-specific autophagy-deficient mice developed podocyte loss and massive proteinuria in a high-fat diet (HFD)-induced diabetic model for inducing minimal proteinuria. Interestingly, huge damaged lysosomes were found in the podocytes of diabetic rats with massive proteinuria and HFD-fed, podocyte-specific autophagy-deficient mice. Furthermore, stimulation of cultured podocytes with sera from patients and rats with diabetes and massive proteinuria impaired autophagy, resulting in lysosome dysfunction and apoptosis. These results suggest that autophagy plays a pivotal role in maintaining lysosome homeostasis in podocytes under diabetic conditions, and that its impairment is involved in the pathogenesis of podocyte loss, leading to massive proteinuria in diabetic nephropathy. These results may contribute to the development of a new therapeutic strategy for advanced diabetic nephropathy.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms