Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1978 May 10;502(2):309-20.
doi: 10.1016/0005-2728(78)90052-x.

The involvement of the electrical double layer in the quenching of 9-aminoacridine fluorescence by negatively charged surfaces

The involvement of the electrical double layer in the quenching of 9-aminoacridine fluorescence by negatively charged surfaces

G F Searle et al. Biochim Biophys Acta. .

Abstract

The addition of 9-aminoacridine monohydrochloride to carboxymethyl-cellulose particles or azolectin liposomes suspended in a low cation medium results in a quenching of its fluorescence. This quenching can be released on the addition of cations. The effectiveness of cations is related only to their valency in the series of salts tested, being monovalent less than divalent less than trivalent, and is independent of the associated anions. These results indicate an electrical rather than a chemical effect, and the relative effectiveness of the various cations can be predicted by the application of classical electrical double layer theory. Fluorescence quenching can also be released on protonation of the fixed negatively charged ionisable groups, and the quenching release curve follows the ionisation curve of these groups. We postulate that when 9-aminoacridine molecules are in the electrical diffuse layer adjacent to the charged surface their fluorescence is quenched, probably due to aggregate formation. As cations are added the 9-aminoacridine concentration at the surface falls as it is displaced into the bulk solution, where it shows a high fluorescence yield with a fluorescence lifetime of 16.3 ns. The fluorescence quenching is associated with an absorbance decrease, which is pronounced with carboxymethyl-cellulose particles and can probably be attributed to self-shielding. The negative charges carried by lipoprotein membranes are primarily due to carboxyl and phosphate groups. Therefore these results with carboxymethyl-cellulose (carboxyl) and azolectin (phosphate) support our earlier suggestion that 9-aminoacridine may be used to probe the electrical double layer associated with negatively charged biological membranes.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources