Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Oct;205(4):834-9.
doi: 10.2214/AJR.15.14334.

High-Pitch Dual-Source MDCT for Imaging of the Thoracoabdominal Aorta: Relationships Among Radiation Dose, Noise, Pitch, and Body Size in a Phantom Experiment and Clinical Study

Affiliations

High-Pitch Dual-Source MDCT for Imaging of the Thoracoabdominal Aorta: Relationships Among Radiation Dose, Noise, Pitch, and Body Size in a Phantom Experiment and Clinical Study

Achille Mileto et al. AJR Am J Roentgenol. 2015 Oct.

Abstract

Objective: The purpose of this study was to investigate, both in a phantom experiment and a within-patient clinical study the relationships among radiation dose, image noise, pitch, and body size in MDCT angiography of the thoracoabdominal aorta, with the use of high-pitch dual-source and standard-pitch single-source acquisitions.

Materials and methods: A proprietary tapered phantom consisting of four ultrahigh-molecular-weight polyethylene cylinders was used to mimic the body size ranges (small, medium, large, and extra large) of patients in the United States. The phantom was imaged using both standard-pitch (0.8) and various high-pitch (range, 2.0-3.2 [in increments of 0.4]) settings. Standard-pitch and high-pitch acquisitions were also performed in 45 patients (27 men, 18 women; mean age, 67.6 years).

Results: At standard pitch, the volume CT dose index (CTDIvol) increased with phantom size, in a logistic sigmoid relationship. At high-pitch settings, the CTDIvol increased gradually in relation to phantom size, up to a threshold (denoted by tCTDI[pitch] ≈ 48.3-7.5 pitch), which linearly decreased (R(2) = 0.99) with pitch (maximum CTDIvol output at pitch [maxCTDI(pitch)] ≈ 18.9-3.9 pitch). A linear decrease in the size-specific dose estimate (SSDE) was observed beyond phantom size thresholds (tSSDE[pitch] ≈ 47.6-8.6 pitch) linearly decreasing (R(2) = 0.98) with pitch (maximum SSDE output at pitch [maxSSDE(pitch)] ≈ 15.5-1.3 pitch). Image noise was statistically significantly lower at standard pitch than at high-pitch settings (p = 0.01). In patients, statistically significant differences were noted between standard and high-pitch settings in the mean CTDIvol(10.8 ± 2.6 and 8.3 ± 0.7 mGy, respectively), SSDE (11.3 ± 2.1 and 8.8 ± 1.5 mGy, respectively), and noise (9.7 ± 2.2 and 14 ± 4.2, respectively) (p < .0001, for all comparisons).

Conclusion: Lower radiation dose levels achieved with the use of a high-pitch technique reflect limitations in tube output occurring for medium to large body sizes, with an associated exponential increase in noise. The standard- and high-pitch techniques yield similar radiation dose levels for small body sizes.

Keywords: MDCT; dual source; high pitch; noise; radiation dose.

PubMed Disclaimer

Publication types

LinkOut - more resources