Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Nov 3;49(21):12958-67.
doi: 10.1021/acs.est.5b02183. Epub 2015 Oct 22.

Point-of-Use Removal of Cryptosporidium parvum from Water: Independent Effects of Disinfection by Silver Nanoparticles and Silver Ions and by Physical Filtration in Ceramic Porous Media

Affiliations

Point-of-Use Removal of Cryptosporidium parvum from Water: Independent Effects of Disinfection by Silver Nanoparticles and Silver Ions and by Physical Filtration in Ceramic Porous Media

Lydia S Abebe et al. Environ Sci Technol. .

Abstract

Ceramic water filters (CWFs) impregnated with silver nanoparticles are a means of household-level water treatment. CWFs remove/deactivate microbial pathogens by employing two mechanisms: metallic disinfection and physical filtration. Herein we report on the independent effects of silver salt and nanoparticles on Cryptosporidium parvum and the removal of C. parvum by physical filtration in porous ceramic filter media. Using a murine (mouse) model, we observed that treatment of oocysts with silver nitrate and proteinate-capped silver nanoparticles resulted in decreased infection relative to untreated oocysts. Microscopy and excystation experiments were conducted to support the disinfection investigation. Heat and proteinate-capped silver-nanoparticle treatment of oocysts resulted in morphological modifications and decreased excystation rates of sporozoites. Subsequently, disk-shaped ceramic filters were produced to investigate the transport of C. parvum. Two factors were varied: sawdust size and clay-to-sawdust ratio. Five disks were prepared with combinations of 10, 16, and 20 mesh sawdust and sawdust percentage that ranged from 9 to 11%. C. parvum removal efficiencies ranged from 1.5 log (96.4%) to 2.1 log (99.2%). The 16-mesh/10% sawdust had the greatest mean reduction of 2.1-log (99.2%), though there was no statistically significant difference in removal efficiency. Based on our findings, physical filtration and silver nanoparticle disinfection likely contribute to treatment of C. parvum for silver impregnated ceramic water filters, although the contribution of physical filtration is likely greater than silver disinfection.

PubMed Disclaimer

Publication types

LinkOut - more resources