Biologically inspired skin lesion segmentation using a geodesic active contour technique
- PMID: 26403797
- DOI: 10.1111/srt.12252
Biologically inspired skin lesion segmentation using a geodesic active contour technique
Abstract
Background/purpose: Computer-aided diagnosis of skin cancer requires accurate lesion segmentation, which must overcome noise such as hair, skin color variations, and ambient light variability.
Methods: A biologically inspired geodesic active contour (GAC) technique is used for lesion segmentation. The algorithm presented here employs automatic contour initialization close to the actual lesion boundary, overcoming the 'sticking' at minimum local energy spots caused by noise artifacts such as hair. The border is significantly smoothed to mimic natural lesions. In addition, features that mimic biological parameters include spectral image subtraction and removal of peninsulas and inlets. Multiple boundary choices borders are created by parameter options used at different steps. These choices can allow future improvement over the basic default border.
Results: The basic GAC algorithm was tested on 100 images (30 melanomas and 70 benign lesions), yielding a median XOR border error of 6.7%, comparable to the median inter-dermatologist XOR border error (7.4%), and lower than the gradient vector flow snake median XOR error of 14.2% on the same image set. On a difficult low-contrast border set of 1238 images, which included 350 non-melanocytic lesions, a median XOR error of 23.9% is obtained.
Conclusion: GAC techniques show promise in attaining the goal of automatic skin lesion segmentation.
Keywords: automatic; contour evolution; dermoscopy; detection; geodesic active contour; image analysis; level set; melanoma; segmentation.
© 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Similar articles
-
Automatic lesion border selection in dermoscopy images using morphology and color features.Skin Res Technol. 2019 Jul;25(4):544-552. doi: 10.1111/srt.12685. Epub 2019 Mar 14. Skin Res Technol. 2019. PMID: 30868667 Free PMC article.
-
A perceptually oriented method for contrast enhancement and segmentation of dermoscopy images.Skin Res Technol. 2013 Feb;19(1):e490-7. doi: 10.1111/j.1600-0846.2012.00670.x. Epub 2012 Aug 13. Skin Res Technol. 2013. PMID: 22882675
-
Three-phase general border detection method for dermoscopy images using non-uniform illumination correction.Skin Res Technol. 2012 Aug;18(3):290-300. doi: 10.1111/j.1600-0846.2011.00569.x. Epub 2011 Sep 6. Skin Res Technol. 2012. PMID: 22092500
-
Lesion border detection in dermoscopy images.Comput Med Imaging Graph. 2009 Mar;33(2):148-53. doi: 10.1016/j.compmedimag.2008.11.002. Epub 2009 Jan 3. Comput Med Imaging Graph. 2009. PMID: 19121917 Free PMC article. Review.
-
Deep Learning Approaches Towards Skin Lesion Segmentation and Classification from Dermoscopic Images - A Review.Curr Med Imaging. 2020;16(5):513-533. doi: 10.2174/1573405615666190129120449. Curr Med Imaging. 2020. PMID: 32484086 Review.
Cited by
-
Skin Cancer Image Segmentation Based on Midpoint Analysis Approach.J Imaging Inform Med. 2024 Oct;37(5):2581-2596. doi: 10.1007/s10278-024-01106-w. Epub 2024 Apr 16. J Imaging Inform Med. 2024. PMID: 38627267 Free PMC article.
-
Automatic lesion border selection in dermoscopy images using morphology and color features.Skin Res Technol. 2019 Jul;25(4):544-552. doi: 10.1111/srt.12685. Epub 2019 Mar 14. Skin Res Technol. 2019. PMID: 30868667 Free PMC article.
-
Advanced Deep Learning Models for Melanoma Diagnosis in Computer-Aided Skin Cancer Detection.Sensors (Basel). 2025 Jan 21;25(3):594. doi: 10.3390/s25030594. Sensors (Basel). 2025. PMID: 39943236 Free PMC article.
-
An Efficient Melanoma Diagnosis Approach Using Integrated HMF Multi-Atlas Map Based Segmentation.J Med Syst. 2019 Jun 12;43(7):225. doi: 10.1007/s10916-019-1315-4. J Med Syst. 2019. PMID: 31190229
-
The Possibility of Deep Learning-Based, Computer-Aided Skin Tumor Classifiers.Front Med (Lausanne). 2019 Aug 27;6:191. doi: 10.3389/fmed.2019.00191. eCollection 2019. Front Med (Lausanne). 2019. PMID: 31508420 Free PMC article. Review.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical