Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Sep 25:14:126.
doi: 10.1186/s12933-015-0292-2.

Soluble RAGE and atherosclerosis in youth with type 1 diabetes: a 5-year follow-up study

Affiliations

Soluble RAGE and atherosclerosis in youth with type 1 diabetes: a 5-year follow-up study

Martin Heier et al. Cardiovasc Diabetol. .

Abstract

Background: Advanced glycation end products (AGEs) play a role in the development of late complications and atherosclerosis in diabetes by engaging the receptor for advanced glycation end products, RAGE. Receptor binding leads to activation of the vascular endothelium and increased inflammation in the vessel wall. The soluble variants of the receptor, endogenous secretory RAGE (esRAGE) and the cleaved cell-surface part of RAGE, which together comprise soluble RAGE (sRAGE), are suggested to have a protective effect acting as decoys for RAGE. We aimed to test whether high levels of soluble variants of RAGE could be protective against atherosclerosis development.

Methods: Participants in the prospective atherosclerosis and childhood diabetes study were examined at baseline (aged 8-18) and at follow-up after 5 years. Both sRAGE and esRAGE were measured by immunoassay in 299 patients with type 1 diabetes and 112 healthy controls at baseline and 241 patients and 128 controls at follow-up. The AGEs methylglyoxal-derived hydroimidazolone-1 (MG-H1) and carboxymethyllysine (CML) were measured by immunoassay. The surrogate markers of atherosclerosis assessed were carotid intima-media thickness (cIMT), C-reactive protein (CRP) and Young's modulus, measures of arterial wall thickness, inflammation and arterial stiffness, respectively.

Results: Levels of sRAGE and esRAGE correlated strongly both at baseline and at follow-up in both diabetes patients and controls. With increasing age, mean values of both variants declined, independent of gender, diabetes or pubertal stage. In the diabetes group, multiple regression analysis showed a positive association between both variants of soluble RAGE and cIMT. There was no significant relationship with Young's modulus, but a negative association between sRAGE at baseline and CRP at follow-up. The ratios between the AGEs and the variants of soluble RAGE were increased in diabetes patients compared to controls.

Conclusions: The results show a possible protective effect of high levels of sRAGE at baseline against inflammation 5 years later, but not on arterial stiffness or wall thickness, in this cohort of adolescents and young adults with T1D.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Mean sRAGE and age. Values in diabetes patients (grey line) and controls (dotted line). The figure includes two values from each participant, one at baseline and one at follow-up

References

    1. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54:1615–1625. doi: 10.2337/diabetes.54.6.1615. - DOI - PubMed
    1. Jandeleit-Dahm K, Cooper ME. The role of AGEs in cardiovascular disease. Curr Pharm Des. 2008;14:979–986. doi: 10.2174/138161208784139684. - DOI - PubMed
    1. Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YC, et al. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem. 1992;267:14998–15004. - PubMed
    1. Ritthaler U, Deng Y, Zhang Y, Greten J, Abel M, Sido B, et al. Expression of receptors for advanced glycation end products in peripheral occlusive vascular disease. Am J Pathol. 1995;146:688–694. - PMC - PubMed
    1. Soulis T, Thallas V, Youssef S, Gilbert RE, McWilliam BG, Murray-McIntosh RP, et al. Advanced glycation end products and their receptors co-localise in rat organs susceptible to diabetic microvascular injury. Diabetologia. 1997;40:619–628. doi: 10.1007/s001250050725. - DOI - PubMed

Publication types

MeSH terms