KCNE1 and KCNE3: The yin and yang of voltage-gated K(+) channel regulation
- PMID: 26410412
- PMCID: PMC4917010
- DOI: 10.1016/j.gene.2015.09.059
KCNE1 and KCNE3: The yin and yang of voltage-gated K(+) channel regulation
Abstract
The human KCNE gene family comprises five genes encoding single transmembrane-spanning ion channel regulatory subunits. The primary function of KCNE subunits appears to be regulation of voltage-gated potassium (Kv) channels, and the best-understood KCNE complexes are with the KCNQ1 Kv α subunit. Here, we review the often opposite effects of KCNE1 and KCNE3 on Kv channel biology, with an emphasis on regulation of KCNQ1. Slow-activating IKs channel complexes formed by KCNQ1 and KCNE1 are essential for human ventricular myocyte repolarization, while constitutively active KCNQ1-KCNE3 channels are important in the intestine. Inherited sequence variants in human KCNE1 and KCNE3 cause cardiac arrhythmias but by different mechanisms, and each is important for hearing in unique ways. Because of their contrasting effects on KCNQ1 function, KCNE1 and KCNE3 have proved invaluable tools in the mechanistic understanding of how channel gating can be manipulated, and each may also provide a window into novel insights and new therapeutic opportunities in K(+) channel pharmacology. Finally, findings from studies of Kcne1(-/-) and Kcne3(-/-) mouse lines serve to illustrate the complexity of KCNE biology and KCNE-linked disease states.
Keywords: Auditory; Cardiac arrhythmia; Inherited deafness; Intestine; Long QT syndrome; Potassium channel; Voltage-gated.
Copyright © 2015 Elsevier B.V. All rights reserved.
Figures



Similar articles
-
KCNE1 and KCNE3 modulate KCNQ1 channels by affecting different gating transitions.Proc Natl Acad Sci U S A. 2017 Aug 29;114(35):E7367-E7376. doi: 10.1073/pnas.1710335114. Epub 2017 Aug 14. Proc Natl Acad Sci U S A. 2017. PMID: 28808020 Free PMC article.
-
Allosteric mechanism for KCNE1 modulation of KCNQ1 potassium channel activation.Elife. 2020 Oct 23;9:e57680. doi: 10.7554/eLife.57680. Elife. 2020. PMID: 33095155 Free PMC article.
-
Dynamic subunit stoichiometry confers a progressive continuum of pharmacological sensitivity by KCNQ potassium channels.Proc Natl Acad Sci U S A. 2013 May 21;110(21):8732-7. doi: 10.1073/pnas.1300684110. Epub 2013 May 6. Proc Natl Acad Sci U S A. 2013. PMID: 23650380 Free PMC article.
-
Insights into Cardiac IKs (KCNQ1/KCNE1) Channels Regulation.Int J Mol Sci. 2020 Dec 11;21(24):9440. doi: 10.3390/ijms21249440. Int J Mol Sci. 2020. PMID: 33322401 Free PMC article. Review.
-
The membrane protein KCNQ1 potassium ion channel: Functional diversity and current structural insights.Biochim Biophys Acta Biomembr. 2020 May 1;1862(5):183148. doi: 10.1016/j.bbamem.2019.183148. Epub 2019 Dec 9. Biochim Biophys Acta Biomembr. 2020. PMID: 31825788 Free PMC article. Review.
Cited by
-
Studying Conformational Properties of Transmembrane Domain of KCNE3 in a Lipid Bilayer Membrane Using Molecular Dynamics Simulations.Membranes (Basel). 2024 Feb 4;14(2):45. doi: 10.3390/membranes14020045. Membranes (Basel). 2024. PMID: 38392672 Free PMC article.
-
β Subunits Functionally Differentiate Human Kv4.3 Potassium Channel Splice Variants.Front Physiol. 2017 Feb 8;8:66. doi: 10.3389/fphys.2017.00066. eCollection 2017. Front Physiol. 2017. PMID: 28228734 Free PMC article.
-
Mechanisms of KCNQ1 gating modulation by KCNE1/3 for cell-specific function.Cell Res. 2025 Jul 31. doi: 10.1038/s41422-025-01152-1. Online ahead of print. Cell Res. 2025. PMID: 40745202
-
Fluorescence Fluctuation Spectroscopy enables quantification of potassium channel subunit dynamics and stoichiometry.Sci Rep. 2021 May 21;11(1):10719. doi: 10.1038/s41598-021-90002-2. Sci Rep. 2021. PMID: 34021177 Free PMC article.
-
β Subunits Control the Effects of Human Kv4.3 Potassium Channel Phosphorylation.Front Physiol. 2017 Sep 1;8:646. doi: 10.3389/fphys.2017.00646. eCollection 2017. Front Physiol. 2017. PMID: 28919864 Free PMC article.
References
-
- Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998;280(5360):69–77. - PubMed
-
- Long SB, Campbell EB, Mackinnon R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science. 2005;309(5736):897–903. - PubMed
-
- Miller AN, Long SB. Crystal structure of the human two-pore domain potassium channel K2P1. Science. 2012;335(6067):432–6. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical