Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Nov;27(42):6549-74.
doi: 10.1002/adma.201502999. Epub 2015 Sep 30.

Carbon/Silicon Heterojunction Solar Cells: State of the Art and Prospects

Affiliations

Carbon/Silicon Heterojunction Solar Cells: State of the Art and Prospects

Xinming Li et al. Adv Mater. 2015 Nov.

Abstract

In the last few decades, advances and breakthroughs of carbon materials have been witnessed in both scientific fundamentals and potential applications. The combination of carbon materials with traditional silicon semiconductors to fabricate solar cells has been a promising field of carbon science. The power conversion efficiency has reached 15-17% with an astonishing speed, and the diversity of systems stimulates interest in further research. Here, the historical development and state-of-the-art carbon/silicon heterojunction solar cells are covered. Firstly, the basic concept and mechanism of carbon/silicon solar cells are introduced with a specific focus on solar cells assembled with carbon nanotubes and graphene due to their unique structures and properties. Then, several key technologies with special electrical and optical designs are introduced to improve the cell performance, such as chemical doping, interface passivation, anti-reflection coatings, and textured surfaces. Finally, potential pathways and opportunities based on the carbon/silicon heterojunction are envisaged. The aspects discussed here may enable researchers to better understand the photovoltaic effect of carbon/silicon heterojunctions and to optimize the design of graphene-based photodevices for a wide range of applications.

Keywords: carbon nanotubes; fullerene; graphene; silicon; solar cells.

PubMed Disclaimer

LinkOut - more resources