Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Dec;227(3):179-91.
doi: 10.1530/JOE-15-0219. Epub 2015 Sep 30.

Hepatic lipase deficiency produces glucose intolerance, inflammation and hepatic steatosis

Affiliations

Hepatic lipase deficiency produces glucose intolerance, inflammation and hepatic steatosis

Irene Andrés-Blasco et al. J Endocrinol. 2015 Dec.

Abstract

Metabolic syndrome and type 2 diabetes mellitus constitute a major problem to global health, and their incidence is increasing at an alarming rate. Non-alcoholic fatty liver disease, which affects up to 90% of obese people and nearly 70% of the overweight, is commonly associated with MetS characteristics such as obesity, insulin resistance, hypertension and dyslipidemia. In the present study, we demonstrate that hepatic lipase (HL)-inactivation in mice fed with a high-fat, high-cholesterol diet produced dyslipidemia including hypercholesterolemia, hypertriglyceridemia and increased non-esterified fatty acid levels. These changes were accompanied by glucose intolerance, pancreatic and hepatic inflammation and steatosis. In addition, compared with WT mice, HL(-/-) mice exhibited enhanced circulating MCP1 levels, monocytosis and higher percentage of CD4+Th17+ cells. Consistent with increased inflammation, livers from HL(-/-) mice had augmented activation of the stress SAPK/JNK- and p38-pathways compared with the activation levels of the kinases in livers from WT mice. Analysis of HL(-/-) and WT mice fed regular chow diet showed dyslipidemia and glucose intolerance in HL(-/-) mice without any other changes in inflammation or hepatic steatosis. Altogether, these results indicate that dyslipidemia induced by HL-deficiency in combination with a high-fat, high-cholesterol diet promotes hepatic steatosis and inflammation in mice which are, at least in part, mediated by the activation of the stress SAPK/JNK- and p38-pathways. Future studies are warranted to asses the viability of therapeutic strategies based on the modulation of these kinases to reduce hepatic steatosis associated to lipase dysfunction.

Keywords: glucose intolerance; inflammation; lipase; steatosis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources