Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Sep 25;4(4):607-39.
doi: 10.3390/biology4040607.

Antimicrobial Peptides as Mediators of Innate Immunity in Teleosts

Affiliations
Review

Antimicrobial Peptides as Mediators of Innate Immunity in Teleosts

Barbara A Katzenback. Biology (Basel). .

Abstract

Antimicrobial peptides (AMPs) have been identified throughout the metazoa suggesting their evolutionarily conserved nature and their presence in teleosts is no exception. AMPs are short (18-46 amino acids), usually cationic, amphipathic peptides. While AMPs are diverse in amino acid sequence, with no two AMPs being identical, they collectively appear to have conserved functions in the innate immunity of animals towards the pathogens they encounter in their environment. Fish AMPs are upregulated in response to pathogens and appear to have direct broad-spectrum antimicrobial activity towards both human and fish pathogens. However, an emerging role for AMPs as immunomodulatory molecules has become apparent-the ability of AMPs to activate the innate immune system sheds light onto the multifaceted capacity of these small peptides to combat pathogens through direct and indirect means. Herein, this review focuses on the role of teleost AMPs as modulators of the innate immune system and their regulation in response to pathogens or other exogenous molecules. The capacity to regulate AMP expression by exogenous factors may prove useful in modulating AMP expression in fish to prevent disease, particularly in aquaculture settings where crowded conditions and environmental stress pre-dispose these fish to infection.

Keywords: NF-kB; antimicrobial peptides; aquaculture; cathelicidins; defensins; fish; hepcidins; innate immunity; piscidins; teleosts.

PubMed Disclaimer

References

    1. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415:389–395. doi: 10.1038/415389a. - DOI - PubMed
    1. Gilmore T.D., Wolenski F.S. NF-κB: Where did it come from and why? Immunol. Rev. 2012;246:14–35. doi: 10.1111/j.1600-065X.2012.01096.x. - DOI - PubMed
    1. Wang G., Li X., Wang Z. APD2: The updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res. 2009;37:933–937. doi: 10.1093/nar/gkn823. - DOI - PMC - PubMed
    1. Masso-Silva J.A., Diamond G. Antimicrobial peptides from fish. Pharmaceuticals. 2014;7:265–310. doi: 10.3390/ph7030265. - DOI - PMC - PubMed
    1. Zou J., Mercier C., Koussounadis A., Secombes C. Discovery of multiple beta-defensin like homologues in teleost fish. Mol. Immunol. 2007;44:638–647. doi: 10.1016/j.molimm.2006.01.012. - DOI - PubMed

LinkOut - more resources