Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1989 Jan 26;337(6205):382-5.
doi: 10.1038/337382a0.

psbA genes indicate common ancestry of prochlorophytes and chloroplasts

Affiliations
Comparative Study

psbA genes indicate common ancestry of prochlorophytes and chloroplasts

C W Morden et al. Nature. .

Erratum in

  • Nature 1989 Jun 1;339(6223):400

Abstract

It has long been suspected that chloroplasts evolved after an endosymbiotic event involving a photosynthetic prokaryote, presumably a cyanobacterium, and a eukaryotic organism. Recent studies have provided strong evidence about the cyanobacterial nature of chloroplasts. Since the discovery of prochlorophytes, oxygen-evolving photosynthetic prokaryotes containing chlorophyll a and chlorophyll b and lacking phycobiliproteins, there has been speculation that these represent evolutionary intermediates between cyanobacteria and chloroplasts. Prochloron sp., the first described prochlorophyte, proved difficult to work with because it is an obligate symbiont of marine ascidians. Prochlorothrix hollandica, a recently isolated, freshwater filamentous prochlorophyte, is easily maintained in the laboratory. Overall pigment composition and thylakoid membrane structure of P. hollandica suggest it has intermediate characteristics between cyanobacteria and the chloroplasts of higher plants. The P. hollandica psbA genes, which encode the photosystem II thylakoid protein D1, were cloned and sequenced and the sequences compared to those reported for cyanobacteria, a green alga, a liverwort, and several higher plants. The two psbA genes present in P. hollandica encode an identical amino-acid sequence. As in all chloroplast psbA genes, there is a seven amino-acid gap near the C terminus of the derived protein relative to the protein predicted by cyanobacterial genes, suggesting that P. hollandica is part of the lineage that led to chloroplasts after a divergence from cyanobacteria. This hypothesis is also supported by phylogenetic analysis of derived D1 amino-acid sequences from psbA genes of thirteen taxa on the basis of parsimony.

PubMed Disclaimer

Publication types

Substances