Highly Efficient Copper-Indium-Selenide Quantum Dot Solar Cells: Suppression of Carrier Recombination by Controlled ZnS Overlayers
- PMID: 26431392
- DOI: 10.1021/acsnano.5b04917
Highly Efficient Copper-Indium-Selenide Quantum Dot Solar Cells: Suppression of Carrier Recombination by Controlled ZnS Overlayers
Abstract
Copper-indium-selenide (CISe) quantum dots (QDs) are a promising alternative to the toxic cadmium- and lead-chalcogenide QDs generally used in photovoltaics due to their low toxicity, narrow band gap, and high absorption coefficient. Here, we demonstrate that the photovoltaic performance of CISe QD-sensitized solar cells (QDSCs) can be greatly enhanced simply by optimizing the thickness of ZnS overlayers on the QD-sensitized TiO2 electrodes. By roughly doubling the thickness of the overlayers compared to the conventional one, conversion efficiency is enhanced by about 40%. Impedance studies reveal that the thick ZnS overlayers do not affect the energetic characteristics of the photoanode, yet enhance the kinetic characteristics, leading to more efficient photovoltaic performance. In particular, both interfacial electron recombination with the electrolyte and nonradiative recombination associated with QDs are significantly reduced. As a result, our best cell yields a conversion efficiency of 8.10% under standard solar illumination, a record high for heavy metal-free QD solar cells to date.
Keywords: ZnS overlayers; copper−indium−selenide; heavy metal-free; quantum dot-sensitized solar cells; recombination control.
Similar articles
-
Copper-indium-selenide quantum dot-sensitized solar cells.Phys Chem Chem Phys. 2013 Dec 21;15(47):20517-25. doi: 10.1039/c3cp54270j. Epub 2013 Nov 1. Phys Chem Chem Phys. 2013. PMID: 24177572
-
Highly Efficient Photoelectrochemical Hydrogen Production Using Nontoxic CuIn1.5Se3 Quantum Dots with ZnS/SiO2 Double Overlayers.ACS Appl Mater Interfaces. 2022 Jan 12;14(1):603-610. doi: 10.1021/acsami.1c16976. Epub 2021 Dec 27. ACS Appl Mater Interfaces. 2022. PMID: 34958547
-
High-efficiency "green" quantum dot solar cells.J Am Chem Soc. 2014 Jun 25;136(25):9203-10. doi: 10.1021/ja504310w. Epub 2014 Jun 11. J Am Chem Soc. 2014. PMID: 24877600
-
Interfacial Engineering for Quantum-Dot-Sensitized Solar Cells.Chem Asian J. 2016 Apr 20;11(8):1183-93. doi: 10.1002/asia.201600034. Epub 2016 Mar 24. Chem Asian J. 2016. PMID: 26879244 Review.
-
Quantum Dot Based Solar Cells: Role of Nanoarchitectures, Perovskite Quantum Dots, and Charge-Transporting Layers.ChemSusChem. 2019 Nov 8;12(21):4724-4753. doi: 10.1002/cssc.201901505. Epub 2019 Oct 14. ChemSusChem. 2019. PMID: 31347771 Review.
Cited by
-
Effects of Mono- and Bifunctional Surface Ligands of Cu-In-Se Quantum Dots on Photoelectrochemical Hydrogen Production.Materials (Basel). 2022 Aug 31;15(17):6010. doi: 10.3390/ma15176010. Materials (Basel). 2022. PMID: 36079393 Free PMC article.
-
Solar Paint from TiO2 Particles Supported Quantum Dots for Photoanodes in Quantum Dot-Sensitized Solar Cells.ACS Omega. 2018 Jan 26;3(1):1102-1109. doi: 10.1021/acsomega.7b01761. eCollection 2018 Jan 31. ACS Omega. 2018. PMID: 31457952 Free PMC article.
-
Effect of One-Coordinated Atoms on the Electronic and Optical Properties of ZnSe Clusters.ACS Omega. 2021 Jul 15;6(29):18711-18718. doi: 10.1021/acsomega.1c01550. eCollection 2021 Jul 27. ACS Omega. 2021. PMID: 34337210 Free PMC article.
-
A structure of CdS/CuxS quantum dots sensitized solar cells.Appl Phys Lett. 2016 May 23;108(21):213901. doi: 10.1063/1.4952435. Epub 2016 May 24. Appl Phys Lett. 2016. PMID: 27375297 Free PMC article.
-
Origin of the effects of PEG additives in electrolytes on the performance of quantum dot sensitized solar cells.RSC Adv. 2018 Aug 24;8(52):29958-29966. doi: 10.1039/c8ra05794j. eCollection 2018 Aug 20. RSC Adv. 2018. PMID: 35547302 Free PMC article.
Publication types
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous