Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1989 Jan;268(1):1-8.
doi: 10.1016/0003-9861(89)90558-4.

The multicatalytic proteinase of mammalian cells

Affiliations
Review

The multicatalytic proteinase of mammalian cells

A J Rivett. Arch Biochem Biophys. 1989 Jan.

Abstract

A high-molecular-weight nonlysosomal proteinase has recently been discovered in mammalian cells. It is a widely distributed and abundant enzyme which has attracted attention because of its complex multisubunit structure and its unusual catalytic properties. The 700-kDa proteinase is composed of many different types of low-molecular-weight subunits (Mr 21,000-34,000) arranged in a hollow cylindrical structure. This 20 S complex is very similar, if not identical, to the 19-20 S cylindrical particles, ring-type particles, or prosomes which have been isolated from several different types of eukaryotic cells. The proteinase appears to have at least two distinct catalytic sites and can cleave bonds on the carboxyl side of basic, hydrophobic, or acidic amino acid residues. Inhibition of proteinase activity by thiol reagents supports the suggestion that the enzyme is a cysteine proteinase but there is some evidence that it may be a serine proteinase and the catalytic mechanism is at present unknown. ATP has little effect on proteinase activity in most purified preparations but recently the proteinase has been implicated in ATP-dependent pathways of protein degradation. Ther is a second type of high-molecular-weight complex multisubunit proteinase, a 26 S particle, which catalyzes the ATP-dependent degradation of ubiquitin-protein conjugates. The precise function of these two complex proteinases in intracellular proteolysis remains to be elucidated.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources